Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: Adaptive robust observer-based approach

In this paper, an adaptive robust observer-based scheme for the synchronization of unidirectional coupled chaotic systems with unknown channel time-delay and system uncertainties is proposed. The effects of time-delay arise from the physical characteristics of coupled channel, while the system uncertainties arise due to unknown but bounded external disturbances and parametric perturbations. By appropriately selecting the observer controller and adaptation mechanism, the master–slave chaotic synchronization can be guaranteed by Lyapunov approach. Finally, the Chua’s circuit is used as an illustrative example, where simulation results are given to demonstrate the effectiveness of the proposed scheme.

[1]  Wei Xing Zheng,et al.  Global chaos synchronization with channel time-delay , 2004 .

[2]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[3]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[4]  Kuang-Yow Lian,et al.  Adaptive synchronization design for chaotic systems via a scalar driving signal , 2002 .

[5]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[6]  Chyun-Chau Fuh,et al.  A robust controller for chaotic systems under external excitation , 2002 .

[7]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[8]  Chen Cong Switching Manifold Approach to Chaos Synchronization , 2001 .

[9]  E. Solak,et al.  On the Synchronization of Chaos Systems by Using State Observers , 1997 .

[10]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[11]  Louis M. Pecora,et al.  Synchronizing chaotic systems , 1993, Optics & Photonics.

[12]  Leon O. Chua,et al.  ADAPTIVE SYNCHRONIZATION OF CHUA'S OSCILLATORS , 1996 .

[13]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[14]  Silvano Cincotti,et al.  Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..

[15]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[17]  O. Rössler An equation for hyperchaos , 1979 .

[18]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[19]  T. Liao Observer-based approach for controlling chaotic systems , 1998 .

[20]  Her-Terng Yau,et al.  Control of chaos in Lorenz system , 2002 .

[21]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[22]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[23]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[24]  Akio Ushida,et al.  On synchronization phenomena in chaotic systems coupled by transmission line , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[25]  Leon O. Chua,et al.  ON ADAPTIVE SYNCHRONIZATION AND CONTROL OF NONLINEAR DYNAMICAL SYSTEMS , 1996 .

[26]  H.F. Chen,et al.  Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation , 2000, IEEE Journal of Quantum Electronics.

[27]  M. T. Yassen,et al.  Chaos control of Chen chaotic dynamical system , 2003 .

[28]  T. Liao,et al.  Adaptive Synchronization of Two Lorenz Systemsfn1 , 1998 .