Promoter protection by a transcription factor acting as a local topological homeostat

Binding of the Escherichia coli global transcription factor FIS to the upstream activating sequence (UAS) of stable RNA promoters activates transcription on the outgrowth of cells from stationary phase. Paradoxically, while these promoters require negative supercoiling of DNA for optimal activity, FIS counteracts the increase of negative superhelical density by DNA gyrase. We demonstrate that binding of FIS at the UAS protects the rrnA P1 promoter from inactivation at suboptimal superhelical densities. This effect is correlated with FIS‐dependent constraint of writhe and facilitated untwisting of promoter DNA. We infer that FIS maintains stable RNA transcription by stabilizing local writhe in the UAS. These results suggest a novel mechanism of transcriptional regulation by a transcription factor acting as a local topological homeostat.

[1]  P. Sarmientos,et al.  Functional interrelationship between two tandem E. coli ribosomal RNA promoters , 1983, Nature.

[2]  M. Zacharias,et al.  Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. , 1992, Biochemistry.

[3]  R. C. Johnson,et al.  DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1 , 1993, Journal of bacteriology.

[4]  A. Travers,et al.  FIS modulates growth phase‐dependent topological transitions of DNA in Escherichia coli , 1997, Molecular microbiology.

[5]  A. Khodursky,et al.  Topoisomerase IV is a target of quinolones in Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Gralla,et al.  Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter , 1992, Molecular microbiology.

[7]  A. Travers,et al.  The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. , 1993, The EMBO journal.

[8]  A. Lamond Supercoiling response of a bacterial tRNA gene. , 1985, The EMBO journal.

[9]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB P1 promoter in vitro. , 1991, Journal of molecular biology.

[10]  R Kahmann,et al.  Regulation of crp transcription by oscillation between distinct nucleoprotein complexes , 1998, The EMBO journal.

[11]  R. Gourse,et al.  Regulation of rRNA Transcription Is Remarkably Robust: FIS Compensates for Altered Nucleoside Triphosphate Sensing by Mutant RNA Polymerases at Escherichia coli rrn P1 Promoters , 2000, Journal of bacteriology.

[12]  N R Cozzarelli,et al.  Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. , 1997, Genes & development.

[13]  C. Dorman 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. , 1995, Microbiology.

[14]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[15]  A. Travers,et al.  CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes* , 2001, The Journal of Biological Chemistry.

[16]  C. Condon,et al.  Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. , 1992, The EMBO journal.

[17]  J. Sylvester,et al.  Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids , 1983, Cell.

[18]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[19]  R. Kahmann,et al.  Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. , 1986, The Journal of biological chemistry.

[20]  M. Buckle,et al.  The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes. , 2000, Journal of molecular biology.

[21]  S. Aiyar,et al.  Contributions of UP Elements and the Transcription Factor FIS to Expression from the Seven rrn P1 Promoters inEscherichia coli , 2001, Journal of bacteriology.

[22]  Y. Tse‐Dinh,et al.  DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. , 1997, Trends in microbiology.

[23]  A. Travers,et al.  DNA supercoiling and transcription in Escherichia coli: The FIS connection. , 2001, Biochimie.

[24]  L. Bosch,et al.  Potential binding sites of the trans-activator FIS are present upstream of all rRNA operons and of many but not all tRNA operons. , 1990, Biochimica et biophysica acta.

[25]  S. Cohen,et al.  Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control. , 1994, Journal of molecular biology.

[26]  P. Sander,et al.  Mechanisms of upstream activation of the rrnD promoter P1 of Escherichia coli. , 1993, The Journal of biological chemistry.

[27]  A. Travers,et al.  DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. , 1998, Journal of molecular biology.

[28]  L. Bosch,et al.  The role of FIS in trans activation of stable RNA operons of E. coli. , 1990, The EMBO journal.

[29]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. , 1991, Journal of molecular biology.

[30]  A. Lamond,et al.  Requirement for an upstream element for optimal transcription of a bacterial tRNA gene , 1983, Nature.

[31]  R. Gourse,et al.  Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter , 1997, The EMBO journal.

[32]  D. Lilley,et al.  Modulation of tyrT promoter activity by template supercoiling in vivo. , 1994, The EMBO journal.

[33]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[34]  Hanspeter Herzel,et al.  10-11 bp periodicities in complete genomes reflect protein structure and DNA folding , 1999, Bioinform..

[35]  J. Gralla,et al.  Melting during steady-state transcription of the rrnB P1 promoter in vivo and in vitro , 1992, Journal of bacteriology.

[36]  M. Leng,et al.  The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control , 1998, The EMBO journal.

[37]  A. Travers,et al.  The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA , 2000, Molecular microbiology.

[38]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[39]  A. Maxwell DNA gyrase as a drug target. , 1997, Trends in microbiology.

[40]  C. Dorman,et al.  Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function , 1994, Molecular microbiology.

[41]  G. Glaser,et al.  Ribosome associated protein(s) specifically bind(s) to the upstream activator sequence of the E. coli rrnA P1 promoter. , 1989, Nucleic Acids Research.

[42]  Analysis of the shut-off of ribosomal RNA promoters in Escherichia coli upon entering the stationary phase of growth. , 1996, FEMS microbiology letters.

[43]  A. Travers,et al.  Promoter Sequence for Stringent Control of Bacterial Ribonucleic Acid Synthesis , 1980, Journal of bacteriology.