Folding and Assembly of Integral Membrane Proteins: An Introduction

As recently as 1980, the structure of integral membrane proteins was largely terra incognita None of them had yielded three-dimensional crystals, and determination of the amino acid sequence of bacteriorhodopsin (BR) by the groups of Yu. A. Ovchinnikov (Ovchinnikov et al., 1979) and H. G. Khorana (Khorana et al., 1979) had been a biochemical tour de force The most detailed three-dimensional information available was—and was to remain until 1985—the medium-resolution structure of BR that R. Henderson and N. Unwin (1975) had established by electron microscopy. The electron density map showed the bulk of BR to be made up of a bundle of transmembrane α-helices. Since spectroscopic data on bacterial outer membrane porins (Rosenbusch, 1974) indicated that these integral proteins were primarily made up of β-sheets, it was clear that the model offered by BR was not universally transposable.

[1]  J. Rosenbusch,et al.  In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. , 1990, The Journal of biological chemistry.

[2]  H. Khorana,et al.  Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. , 1981, The Journal of biological chemistry.

[3]  M. Saraste,et al.  The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. , 1991, European journal of biochemistry.

[4]  J. Haley,et al.  A 4-kDa maize chloroplast polypeptide associated with the cytochrome b6-f complex: subunit 5, encoded by the chloroplast petE gene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. P. Heyn,et al.  High-sensitivity neutron diffraction of membranes: Location of the Schiff base end of the chromophore of bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Sambrook,et al.  Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport , 1986, Cell.

[7]  M. Inouye,et al.  The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions. , 1978, Annual review of biochemistry.

[8]  R. Doms,et al.  Protein-mediated membrane fusion. , 1989, Annual review of biophysics and biophysical chemistry.

[9]  J. Kinet,et al.  Complete structure and expression in transfected cells of high affinity IgE receptor , 1989, Nature.

[10]  W. N. Green,et al.  Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP , 1991, The Journal of cell biology.

[11]  Ferdinando Palmieri,et al.  Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC) , 1992, Journal of bioenergetics and biomembranes.

[12]  A. Driessen,et al.  The enzymology of protein translocation across the Escherichia coli plasma membrane. , 1991, Annual review of biochemistry.

[13]  Klausner Rd Architectural editing: determining the fate of newly synthesized membrane proteins. , 1989 .

[14]  A. Ducruix,et al.  Structure of the detergent phase and protein-detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center. , 1991, Biochemistry.

[15]  C. Mannella,et al.  Toward the molecular structure of the mitochondrial channel, VDAC , 1992, Journal of bioenergetics and biomembranes.

[16]  D. Engelman,et al.  Chapter 6 Bacteriorhodopsin Folding in Membranes: A Two-Stage Process , 1990 .

[17]  A. Verméglio,et al.  Supramolecular membrane protein assemblies in photosynthesis and respiration , 1993 .

[18]  J. Hoch,et al.  The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones. , 1988, The Journal of biological chemistry.

[19]  G. Heijne Transcending the impenetrable: how proteins come to terms with membranes. , 1988, Biochimica et biophysica acta.

[20]  J. Beckwith,et al.  A genetic approach to analyzing membrane protein topology. , 1986, Science.

[21]  P. Model,et al.  An artificial anchor domain: hydrophobicity suffices to stop transfer , 1985, Cell.

[22]  H. Guy,et al.  Atomic scale structure and functional models of voltage-gated potassium channels. , 1992, Biophysical journal.

[23]  H. Kaback,et al.  In vivo expression of the lacY gene in two segments leads to functional lac permease. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Y. Hatefi,et al.  Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase. Membrane topography of the bovine enzyme. , 1991, The Journal of biological chemistry.

[25]  D. Engelman,et al.  Sequence specificity in the dimerization of transmembrane alpha-helices. , 1992, Biochemistry.

[26]  G. Schmidt,et al.  Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation , 1986, The Journal of cell biology.

[27]  P. Loll,et al.  The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 , 1994, Nature.

[28]  J. Rochaix,et al.  Mutation at the chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II , 1989, Cell.

[29]  J. N. Varghese,et al.  Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution , 1983, Nature.

[30]  A V Finkelstein,et al.  The classification and origins of protein folding patterns. , 1990, Annual review of biochemistry.

[31]  K. Cline,et al.  A stromal protein factor maintains the solubility and insertion competence of an imported thylakoid membrane protein , 1991, The Journal of cell biology.

[32]  F. Hartl,et al.  Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate , 1991, Nature.

[33]  D. Drapier,et al.  Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas. , 1992, The Plant cell.

[34]  A Helenius,et al.  Folding of influenza hemagglutinin in the endoplasmic reticulum , 1991, The Journal of cell biology.

[35]  H. Nikaido,et al.  Existence and purification of porin heterotrimers of Escherichia coli K12 OmpC, OmpF, and PhoE proteins. , 1989, The Journal of biological chemistry.

[36]  R. Ellis Chaperone function: cracking the second half of the genetic code , 1991 .

[37]  F. Pattus Membrane protein structure. , 1990, Current opinion in cell biology.

[38]  R. Herrmann,et al.  Nucleotide sequence of the gene for apocytochrome b‐559 on the spinach plastid chromosome: implications for the structure of the membrane protein , 1984 .

[39]  J. Deisenhofer,et al.  The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis , 1989, Science.

[40]  B. Jap,et al.  Biophysics of the structure and function of porins , 1990, Quarterly Reviews of Biophysics.

[41]  J Deisenhofer,et al.  Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. , 1989, The EMBO journal.

[42]  H. Kaback,et al.  Functional complementation of internal deletion mutants in the lactose permease of Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Beckwith,et al.  The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. , 1984, The Journal of biological chemistry.

[44]  H. Guy,et al.  The ion channel of the nicotinic acetylcholine receptor , 1987, Trends in Neurosciences.

[45]  Jon Beckwith,et al.  The role of charged amino acids in the localization of secreted and membrane proteins , 1990, Cell.

[46]  L. Grivell,et al.  Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. , 1991, European journal of biochemistry.

[47]  J. Merlie,et al.  Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an α subunit species that may be an assembly intermediate , 1983, Cell.

[48]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[49]  A. Helenius,et al.  Protein oligomerization in the endoplasmic reticulum. , 1989, Annual review of cell biology.

[50]  Gunnar von Heijne,et al.  Trans‐membrane Translocation of Proteins , 1979 .

[51]  G. Zaccaı̈,et al.  Retinal location in purple membrane of Halobacterium halobium: a neutron diffraction study of membranes labelled in vivo with deuterated retinal. , 1984, The EMBO journal.

[52]  J P Changeux,et al.  The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis , 1992, Quarterly Reviews of Biophysics.

[53]  R. Webster,et al.  Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers , 1988, The Journal of cell biology.

[54]  J. Deisenhofer,et al.  Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II , 1988 .

[55]  J. Rochaix,et al.  Nuclear mutations specifically affect the synthesis and/or degradation of the chloroplast‐encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii , 1988, The EMBO journal.

[56]  W. Cramer,et al.  Membrane protein structure prediction: cytochrome b. , 1991, Trends in biochemical sciences.

[57]  Z. Hall,et al.  The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly , 1992, Cell.

[58]  J. Sambrook,et al.  Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein , 1982, Nature.

[59]  J. Beckwith,et al.  Alkaline phosphatase fusions: sensors of subcellular location , 1990, Journal of bacteriology.

[60]  J. Beckwith,et al.  Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. , 1988, Journal of molecular biology.

[61]  G. Heijne,et al.  Sec dependent and sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. , 1993, The EMBO journal.

[62]  S. Levy,et al.  Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides , 1991, Journal of bacteriology.

[63]  J. Lakey,et al.  A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A , 1991, Nature.

[64]  Y. Zhang,et al.  β‐lactamase as a probe of membrane protein assembly and protein export , 1990, Molecular microbiology.

[65]  J. Beckwith,et al.  Chapter 5 Steps in the assembly of a cytoplasmic membrane protein: the MalF component of the maltose transport complex , 1992 .

[66]  G. Schulz,et al.  The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution , 1991, FEBS letters.

[67]  A. E. Senior The proton-translocating ATPase of Escherichia coli. , 1990, Annual review of biophysics and biophysical chemistry.

[68]  B. Diner,et al.  Photosystem II particles from Chlamydomonas reinhardtii. Purification, molecular weight, small subunit composition, and protein phosphorylation. , 1991, The Journal of biological chemistry.

[69]  M. Klingenberg Mechanism and evolution of the uncoupling protein of brown adipose tissue. , 1990, Trends in biochemical sciences.

[70]  W. Saurin,et al.  Sequence relationships between integral inner membrane proteins of binding protein‐dependent transport systems: Evolution by recurrent gene duplications , 1994, Protein science : a publication of the Protein Society.

[71]  H. G. Khorana,et al.  Amino acid sequence of bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[72]  G. Schulz,et al.  The three‐dimensional structure of porin from Rhodobacter capsulatus at 3 Å resolution , 1990, FEBS letters.

[73]  J M Sturtevant,et al.  Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. , 1992, Biochemistry.

[74]  T. Schwarz,et al.  Alteration of ionic selectivity of a K+ channel by mutation of the H5 region , 1991, Nature.

[75]  H. G. Khorana Anderegg, R. J.,Nihei, K.,and Biemann Amino acid sequence of bacteriorhodopsin , 1979 .

[76]  A. Helenius,et al.  Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum , 1992, Nature.

[77]  J E Mullet,et al.  Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. , 1991, The Journal of biological chemistry.

[78]  M. Saraste,et al.  Structural features of cytochrome oxidase , 1990, Quarterly Reviews of Biophysics.

[79]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[80]  R. Dalbey Positively charged residues are important determinants of membrane protein topology. , 1990, Trends in biochemical sciences.

[81]  Joanne I. Yeh,et al.  Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. , 1995, Science.

[82]  J. Bonifacino,et al.  Membrane protein association by potential intrarnembrane charge pairs , 1991, Nature.

[83]  J. Rothman,et al.  Peptide-binding specificity of the molecular chaperone BiP , 1991, Nature.

[84]  G. Schatz,et al.  Sequential action of mitochondrial chaperones in protein import into the matrix. , 1991, The EMBO journal.

[85]  R. Webster,et al.  Assembly of influenza hemagglutinin trimers and its role in intracellular transport , 1986, The Journal of cell biology.

[86]  J. White,et al.  Viral and cellular membrane fusion proteins. , 1990, Annual review of physiology.

[87]  R. Jaenicke,et al.  Protein folding: local structures, domains, subunits, and assemblies. , 1991, Biochemistry.

[88]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[89]  Z. Hall,et al.  Extracellular domains mediating ɛ subunit interactions of muscle acetylcholine receptor , 1991, Nature.

[90]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[91]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[92]  H. Guy,et al.  Pursuing the structure and function of voltage-gated channels , 1990, Trends in Neurosciences.

[93]  E. Padlan,et al.  Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. , 1988, The Journal of biological chemistry.

[94]  H. Khorana,et al.  Regeneration of the native bacteriorhodopsin structure from two chymotryptic fragments. , 1983, The Journal of biological chemistry.

[95]  P. Hargrave Seven-helix receptors , 1991 .

[96]  M. Caron,et al.  Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. , 1988, Science.

[97]  B. Diner,et al.  Site-directed mutagenesis of the psbC gene of photosystem II: isolation and functional characterization of CP43-less photosystem II core complexes. , 1991, Biochemistry.

[98]  G. von Heijne,et al.  The cytoplasmic domain of Escherichia coli leader peptidase is a "translocation poison" sequence. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[99]  P. S. Kim,et al.  Intermediates in the folding reactions of small proteins. , 1990, Annual review of biochemistry.

[100]  A Karlin,et al.  Explorations of the nicotinic acetylcholine receptor. , 1989, Harvey lectures.

[101]  G. Schulz,et al.  Primary structure of porin from Rhodobacter capsulatus. , 1991, European journal of biochemistry.

[102]  L. Sieburth,et al.  Chloroplast RNA Stability in Chlamydomonas: Rapid Degradation of psbB and psbC Transcripts in Two Nuclear Mutants. , 1991, The Plant cell.

[103]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[104]  J. Fujii,et al.  Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. , 1987, The Journal of clinical investigation.

[105]  N. Green The semiotics of charge , 1991, Nature.

[106]  J. Bonifacino,et al.  Transmembrane helical interactions and the assembly of the T cell receptor complex. , 1990, Science.

[107]  G von Heijne,et al.  The ‘positive‐inside rule’ applies to thylakoid membrane proteins , 1991, FEBS letters.

[108]  D. Engelman,et al.  Intramembrane helix-helix association in oligomerization and transmembrane signaling. , 1992, Annual review of biophysics and biomolecular structure.

[109]  M. Hofnung,et al.  Homologies entre les protéines intégrales de membrane interne de systèmes de transport à protéine affine chez les entérobactéries , 1985 .

[110]  W. N. Green,et al.  Acetylcholine receptor assembly: Subunit folding and oligomerization occur sequentially , 1993, Cell.

[111]  A. Colman,et al.  Trimer formation determines the rate of influenza virus haemagglutinin transport in the early stages of secretion in Xenopus oocytes , 1990, The Journal of cell biology.

[112]  A. Helenius,et al.  Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. , 1992, The EMBO journal.

[113]  C. Betzel,et al.  Three-dimensional structure of system I of photosynthesis at 6 Å resolution , 1993, Nature.

[114]  Werner K¨hlbrandt,et al.  Three-dimensional structure of plant light-harvesting complex determined by electron crystallography , 1991, Nature.

[115]  N. Unwin Nicotinic acetylcholine receptor at 9 A resolution. , 1993, Journal of molecular biology.

[116]  R. Miledi,et al.  Assembly and N-glycosylation of all ACh receptor subunits are required for their efficient insertion into plasma membranes. , 1989, Brain research. Molecular brain research.

[117]  D. Drapier,et al.  Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii , 1989, The Journal of cell biology.

[118]  J. Popot,et al.  Identification of two 4-kDa miniproteins in the cytochrome b6f complex from Chlamydomonas reinhardtii. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[119]  S. Hultgren,et al.  Chaperone-assisted assembly and molecular architecture of adhesive pili. , 1991, Annual review of microbiology.

[120]  D. Engelman,et al.  Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. , 1987, Journal of molecular biology.

[121]  D. Ellar,et al.  Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution , 1991, Nature.

[122]  J. Tommassen,et al.  The ultimate localization of an outer membrane protein of Escherichia coli K‐12 is not determined by the signal sequence. , 1983, The EMBO journal.

[123]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[124]  G von Heijne,et al.  A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[125]  H. Nikaido,et al.  Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. , 1991, The Journal of biological chemistry.

[126]  T A Rapoport,et al.  Predicting the orientation of eukaryotic membrane-spanning proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[127]  D. Engelman,et al.  Tertiary structure of bacteriorhodopsin. Positions and orientations of helices A and B in the structural map determined by neutron diffraction. , 1989, Journal of molecular biology.

[128]  H. Nikaido,et al.  Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. , 1991, The Journal of biological chemistry.

[129]  B. Witholt,et al.  Assembly pathway of newly synthesized LamB protein an outer membrane protein of Escherichia coli K-12. , 1984, Journal of molecular biology.

[130]  J. Jackson,et al.  Purification and properties of the H(+)-nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus. , 1991, European journal of biochemistry.

[131]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[132]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[133]  G Büldt,et al.  Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. Elements of the proton pathway? , 1990, Journal of molecular biology.

[134]  U. Sonnewald,et al.  Reconstitution of an active lactose carrier in vivo by simultaneous synthesis of two complementary protein fragments , 1990, Journal of bacteriology.

[135]  G. von Heijne,et al.  Topogenic signals in integral membrane proteins. , 1988, European journal of biochemistry.

[136]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[137]  M. Jennings Topography of membrane proteins. , 1989, Annual review of biochemistry.

[138]  H. Lodish,et al.  The human glucose transporter can insert posttranslationally into microsomes , 1986, Cell.

[139]  G. Heijne Why mitochondria need a genome , 1986 .

[140]  J. Merlie,et al.  Biogenesis of the mouse muscle nicotinic acetylcholine receptor , 1991 .

[141]  J. Merlie,et al.  BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor , 1991, The Journal of cell biology.

[142]  R. Heinrikson,et al.  Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. , 1990, Gene.

[143]  J. Lindstrom,et al.  Assembly of Torpedo acetylcholine receptors in Xenopus oocytes , 1991, The Journal of cell biology.

[144]  H. Kaback,et al.  Structure of the lac carrier protein of Escherichia coli. , 1983, The Journal of biological chemistry.

[145]  W. Neupert,et al.  Protein translocation across mitochondrial membranes , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[146]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[147]  W. N. Green,et al.  cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[148]  K. Baker,et al.  Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria , 1991, Nature.

[149]  A. V. Kiselev,et al.  The structural basis of the functioning of bacteriorhodopsin: An overview , 1979, FEBS letters.

[150]  W. Agnew,et al.  Voltage-sensitive Na+ channels: motifs, modes and modulation. , 1991, Current opinion in cell biology.

[151]  G. Vonheijne The signal peptide. , 1990 .

[152]  H. Paulson,et al.  Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant , 1989, The Journal of cell biology.

[153]  M. Colombini,et al.  Probing the structure of the mitochondrial channel, VDAC, by site-directed mutagenesis: A progress report , 1989, Journal of bioenergetics and biomembranes.

[154]  K Ito,et al.  A positively charged region is a determinant of the orientation of cytoplasmic membrane proteins in Escherichia coli. , 1990, The Journal of biological chemistry.

[155]  J. Rochaix,et al.  Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. , 1989, The EMBO journal.

[156]  P. Camacho,et al.  Identification of two amino acid residues in the ϵ subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells , 1991, Neuron.

[157]  R. Doms,et al.  Quaternary structure of influenza virus hemagglutinin after acid treatment , 1986, Journal of virology.

[158]  S. Mizushima,et al.  Arrangement of proteins O-8 and O-9 in outer membrane of Escherichia coli K-12. Existence of homotrimers and heterotrimers. , 1979, European journal of biochemistry.

[159]  R. Garavito,et al.  The art of crystallizing membrane proteins , 1990 .

[160]  N. Unwin The structure of ion channels in membranes of excitable cells , 1989, Neuron.

[161]  P. Weisbeek,et al.  Chloroplast protein topogenesis: import, sorting and assembly. , 1991, Biochimica et biophysica acta.

[162]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[163]  H. Khorana Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. , 1992, The Journal of biological chemistry.

[164]  B. Müller-Hill,et al.  Sequence of the lactose permease gene , 1980, Nature.

[165]  O. Bakke,et al.  MHC class II-associated invariant chain contains a sorting signal for endosomal compartments , 1990, Cell.

[166]  A. Karlin Structure of nicotinic acetylcholine receptors , 1993, Current Opinion in Neurobiology.

[167]  R. Pettersson,et al.  Formation and intracellular transport of a heterodimeric viral spike protein complex , 1991, The Journal of cell biology.

[168]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[169]  A. Goldman,et al.  Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein , 1991, Science.

[170]  G. Schmidt,et al.  In vitro reconstitution of a light-harvesting gene product: deletion mutagenesis and analyses of pigment binding. , 1992, Biochemistry.

[171]  B. Diner,et al.  COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. , 1988, The Journal of biological chemistry.

[172]  C. Georgopoulos,et al.  The universally conserved GroE (Hsp60) chaperonins. , 1991, Annual review of microbiology.

[173]  R. MacKinnon,et al.  Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel , 1991, Science.

[174]  D. Engelman,et al.  Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. , 1992, Biochemistry.

[175]  J. Tommassen,et al.  Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration. , 1990, The Journal of biological chemistry.

[176]  Frances M. Brodsky,et al.  The invariant dating service , 1990, Nature.

[177]  T. Creighton Unfolding protein folding , 1991, Nature.

[178]  F. Conti,et al.  Structural parts involved in activation and inactivation of the sodium channel , 1989, Nature.

[179]  X. Yu,et al.  Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells , 1991, The Journal of cell biology.

[180]  O. H. Lowry,et al.  The quantitative histochemistry of brain. I. Chemical methods. , 1954, The Journal of biological chemistry.

[181]  W. Loewenstein,et al.  Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. , 1981, Science.

[182]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[183]  J. Lakey,et al.  The bacterial porin superfamily: sequence alignment and structure prediction , 1991, Molecular microbiology.

[184]  Yoshinori Fujiyoshi,et al.  Atomic model of plant light-harvesting complex by electron crystallography , 1994, Nature.

[185]  J. Beckwith,et al.  Proper insertion of a complex membrane protein in the absence of its amino-terminal export signal. , 1991, The Journal of biological chemistry.

[186]  M. Pisano,et al.  Tandem sequence repeats in transmembrane channel proteins. , 1991, Trends in biochemical sciences.

[187]  S. Cusack,et al.  Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid , 1988, Nature.

[188]  László Patthy,et al.  Modular exchange principles in proteins , 1991 .

[189]  Charis Ghélis,et al.  Protein Folding , 1982 .

[190]  Howard A. Shuman The genetics of active transport in bacteria. , 1987, Annual review of genetics.

[191]  J. Merlie,et al.  Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. , 1987, The Journal of biological chemistry.

[192]  O. Nanba,et al.  Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[193]  J. Beckwith,et al.  Genetic analysis of membrane protein topology by a sandwich gene fusion approach. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[194]  D. Engelman,et al.  Rotational orientation of transmembrane alpha-helices in bacteriorhodopsin. A neutron diffraction study. , 1994, Journal of molecular biology.

[195]  U. Nehls,et al.  Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. , 1990, Journal of molecular biology.

[196]  H. Khorana,et al.  Regeneration of native bacteriorhodopsin structure from fragments. , 1984, The Journal of biological chemistry.

[197]  J. Beckwith,et al.  The dynamics of assembly of a cytoplasmic membrane protein in Escherichia coli. , 1992, The Journal of biological chemistry.

[198]  A. Rutherford,et al.  Photosynthetic reaction centres: variations on a common structural theme? , 1991, Trends in biochemical sciences.

[199]  J. Escaig,et al.  Purified lac permease and cytochrome o oxidase are functional as monomers. , 1987, The Journal of biological chemistry.

[200]  M. Edelman,et al.  Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. Indications for COOH-terminal processing of a chloroplast membrane polypeptide. , 1984, The Journal of biological chemistry.

[201]  D. Tsernoglou,et al.  Structure of the membrane-pore-forming fragment of colicin A , 1989, Nature.

[202]  Singer Sj The Structure and Insertion of Integral Proteins in Membranes , 1990 .

[203]  An artificial hydrophobic sequence functions as either an anchor or a signal sequence at only one of two positions within the Escherichia coli outer membrane protein OmpA. , 1988, The Journal of biological chemistry.

[204]  Y. Jan,et al.  Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence , 1991, Nature.

[205]  J. M. Pratt,et al.  An inner membrane protein N‐terminal signal sequence is able to promote efficient localisation of an outer membrane protein in Escherichia coli. , 1985, The EMBO journal.

[206]  T. Steitz,et al.  The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis , 1981, Cell.

[207]  G. Feher,et al.  The bacterial photosynthetic reaction center as a model for membrane proteins. , 1989, Annual review of biochemistry.

[208]  An SS1–SS2 β-barrel structure for the voltage-activated potassium channel , 1992 .

[209]  O. Ptitsyn,et al.  Why do globular proteins fit the limited set of folding patterns? , 1987, Progress in biophysics and molecular biology.

[210]  A. Crofts,et al.  The use of gene fusions to examine the membrane topology of the L-subunit of the photosynthetic reaction center and of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides. , 1991, The Journal of biological chemistry.

[211]  G. Blobel,et al.  Intracellular protein topogenesis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[212]  M. Hofnung,et al.  Negative dominance in gene lamB: random assembly of secreted subunits issued from different polysomes. , 1983, The EMBO journal.

[213]  M H Saier,et al.  Evolution of the MIP family of integral membrane transport proteins , 1991, Molecular microbiology.

[214]  J. Merlie,et al.  Inhibition of acetylcholine receptor assembly by activity in primary cultures of embryonic rat muscle cells. , 1986, The Journal of biological chemistry.

[215]  S. Levy,et al.  Two complementation groups mediate tetracycline resistance determined by Tn10 , 1982, Journal of bacteriology.

[216]  S H White,et al.  The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. , 1989, Biochemistry.

[217]  J. Li,et al.  Size and shape of the Escherichia coli lactose permease measured in filamentous arrays. , 1987, Biochemistry.

[218]  R. Herrmann,et al.  Evidence for a hetero‐oligomeric structure of the chloroplast cytochrome b‐559 , 1985 .

[219]  J. Merlie,et al.  Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts , 1990, The Journal of cell biology.

[220]  S. Anderson,et al.  Proper and improper folding of proteins in the cellular environment. , 1991, Annual review of microbiology.

[221]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[222]  A. Holmgren,et al.  Crystal structure of chaperone protein PapD reveals an immunoglobulin fold , 1989, Nature.

[223]  D. Engelman,et al.  Topography of integral membrane proteins: hydrophobicity analysis vs. immunolocalization. , 1988, Trends in biochemical sciences.

[224]  H. Nikaido,et al.  Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin , 1991, Journal of bacteriology.

[225]  J. Erickson,et al.  Function and assembly of photosystem II: genetic and molecular analysis. , 1988, Trends in biochemical sciences.

[226]  J. Harborne Encyclopedia of plant physiology, New series , 1978 .

[227]  Y. Jan,et al.  Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel , 1991, Nature.

[228]  Organization and stability of a polytopic membrane protein: deletion analysis of the lactose permease of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[229]  R. Doms,et al.  Intracellular transport of soluble and membrane‐bound glycoproteins: folding, assembly and secretion of anchor‐free influenza hemagglutinin. , 1990, The EMBO journal.

[230]  B. Bormann,et al.  Synthetic peptides mimic the assembly of transmembrane glycoproteins. , 1989, The Journal of biological chemistry.

[231]  E. Liman,et al.  Voltage-sensing residues in the S4 region of a mammalian K+ channel , 1991, Nature.

[232]  A. Brown,et al.  Exchange of conduction pathways between two related K+ channels , 1991, Science.

[233]  W. Kühlbrandt,et al.  Three-dimensional crystallization of membrane proteins , 1988, Quarterly Reviews of Biophysics.

[234]  N. Pfanner,et al.  Mitochondrial protein import. , 1989, Biochimica et biophysica acta.

[235]  D. Oesterhelt,et al.  Three-dimensional crystals of membrane proteins: bacteriorhodopsin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[236]  S Bogusz,et al.  Is a beta-barrel model of the K+ channel energetically feasible? , 1992, Biophysical journal.

[237]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[238]  K. Sumikawa Sequences on the N-terminus of ACh receptor subunits regulate their assembly. , 1992, Brain research. Molecular brain research.

[240]  J. Deisenhofer,et al.  The photosynthetic reaction centre from the purple bacterium , 1989, Bioscience reports.

[241]  J. Deisenhofer,et al.  Detergent structure in crystals of a bacterial photosynthetic reaction centre , 1989, Nature.

[242]  D. Engelman,et al.  Helix-helix interactions inside lipid bilayers , 1992, Current Opinion in Structural Biology.

[243]  H. Geuze,et al.  Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments , 1991, Nature.

[244]  J. Popot,et al.  Integral membrane protein structure: transmembrane α-helices as autonomous folding domains , 1993, Current Opinion in Structural Biology.

[245]  C. Manoil,et al.  lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[246]  T. Ohmori,et al.  Nucleotide sequence of the gene coding for four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. , 1990, Journal of biochemistry.

[247]  J. Popot,et al.  On the microassembly of integral membrane proteins. , 1990, Annual review of biophysics and biophysical chemistry.

[248]  R. Gennis,et al.  The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. , 1990, The Journal of biological chemistry.

[249]  P. Cresswell,et al.  Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain , 1991, Nature.

[250]  P. Borst Structure and function of mitochondrial DNA , 1977 .

[251]  P. A. Peterson,et al.  Intracellular transport of class II MHC molecules directed by invariant chain , 1990, Nature.

[252]  H. Kaback In and out and up and down with lac permease. , 1992, International review of cytology.

[253]  R. Capaldi,et al.  Structure and function of cytochrome c oxidase. , 1990, Annual review of biochemistry.

[254]  W. Neupert,et al.  The mitochondrial protein import apparatus. , 1990, Annual review of biochemistry.

[255]  J. Beckwith,et al.  Decoding signals for membrane protein assembly using alkaline phosphatase fusions. , 1991, The EMBO journal.

[256]  J. Lindstrom,et al.  TE671 cells express an abundance of a partially mature acetylcholine receptor alpha subunit which has characteristics of an assembly intermediate. , 1990, The Journal of biological chemistry.

[257]  A. Karlin,et al.  Acetylcholine receptor channel structure probed in cysteine-substitution mutants. , 1992, Science.

[258]  J. Skehel,et al.  The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. , 1987, Annual review of biochemistry.

[259]  J. Beckwith,et al.  Positively charged amino acid residues can act as topogenic determinants in membrane proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[260]  D. Engelman,et al.  Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments. , 1986, The EMBO journal.

[261]  J. Rosenbusch Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. , 1974, The Journal of biological chemistry.

[262]  J. Rosenbusch,et al.  Prokaryotic and eukaryotic porins , 1991 .

[263]  Eric R. Kandel Fidia Research Foundation neuroscience award lectures , 1987 .

[264]  J. Merlie,et al.  Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly , 1990, The Journal of cell biology.

[265]  W. Gullick,et al.  Neu receptor dimerization , 1989, Nature.

[266]  A. Helenius,et al.  Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP) , 1989, The Journal of cell biology.