The KdV hierarchy and the propagation of solitons on very long distances

The Korteweg-de Vries (KdV) equation is first derived from a general system of partial differential equations. An analysis of the linearized KdV equation satisfied by the higher order amplitudes shows that the secular-producing terms in this equation are the derivatives of the conserved densities of KdV. Using the multi-time formalism, we prove that the propagation on very long distances is governed by all equations of the KdV hierarchy. We compute the soliton solution of the complete hierarchy, which allows to give a criterion for the existence of the soliton.

[1]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[2]  Y. Kodama,et al.  Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System , 1978 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  The secular solutions of the linearized Korteweg–de Vries equation , 1998 .

[5]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[6]  Y. Kodama Normal forms for weakly dispersive wave equations , 1985 .

[7]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[8]  Ronald F. Soohoo,et al.  Theory and application of ferrites , 1960 .

[9]  R. Kraenkel,et al.  Boussinesq solitary‐wave as a multiple‐time solution of the Korteweg–de Vries hierarchy , 1995, patt-sol/9507005.

[10]  T. Taniuti,et al.  Reductive Perturbation Method in Nonlinear Wave Propagation. I , 1968 .

[11]  Y. Kodama On integrable systems with higher order corrections , 1985 .

[12]  The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation , 1995, patt-sol/9509001.

[13]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[14]  Hervé Leblond Higher Order Terms in Multiscale Expansions: A Linearized KdV Hierarchy , 2002 .

[15]  R. Kraenkel,et al.  The Korteweg–de Vries hierarchy and long water‐waves , 1994, patt-sol/9406001.

[16]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[17]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[18]  Guy Métivier,et al.  Transparent Nonlinear Geometric Optics and Maxwell–Bloch Equations , 2000 .

[19]  A. Fokas,et al.  On the asymptotic integrability of a higher‐order evolution equation describing internal waves in a deep fluid , 1996 .

[20]  H. Leblond A new criterion for the existence of KdV solitons in ferromagnets , 2003, nlin/0409005.

[21]  Roberto André Kraenkel,et al.  The reductive perturbation method and the Korteweg-de Vries hierarchy , 1995 .