The KdV hierarchy and the propagation of solitons on very long distances
暂无分享,去创建一个
[1] Lev Davidovich Landau,et al. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .
[2] Y. Kodama,et al. Higher Order Approximation in the Reductive Perturbation Method. I. The Weakly Dispersive System , 1978 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] The secular solutions of the linearized Korteweg–de Vries equation , 1998 .
[5] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .
[6] Y. Kodama. Normal forms for weakly dispersive wave equations , 1985 .
[7] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[8] Ronald F. Soohoo,et al. Theory and application of ferrites , 1960 .
[9] R. Kraenkel,et al. Boussinesq solitary‐wave as a multiple‐time solution of the Korteweg–de Vries hierarchy , 1995, patt-sol/9507005.
[10] T. Taniuti,et al. Reductive Perturbation Method in Nonlinear Wave Propagation. I , 1968 .
[11] Y. Kodama. On integrable systems with higher order corrections , 1985 .
[12] The Role of the Korteweg-de Vries Hierarchy in the N-Soliton Dynamics of the Shallow Water Wave Equation , 1995, patt-sol/9509001.
[13] Vladimir E. Zakharov,et al. What Is Integrability , 1991 .
[14] Hervé Leblond. Higher Order Terms in Multiscale Expansions: A Linearized KdV Hierarchy , 2002 .
[15] R. Kraenkel,et al. The Korteweg–de Vries hierarchy and long water‐waves , 1994, patt-sol/9406001.
[16] S. Sawada,et al. A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .
[17] J. Gibbon,et al. Solitons and Nonlinear Wave Equations , 1982 .
[18] Guy Métivier,et al. Transparent Nonlinear Geometric Optics and Maxwell–Bloch Equations , 2000 .
[19] A. Fokas,et al. On the asymptotic integrability of a higher‐order evolution equation describing internal waves in a deep fluid , 1996 .
[20] H. Leblond. A new criterion for the existence of KdV solitons in ferromagnets , 2003, nlin/0409005.
[21] Roberto André Kraenkel,et al. The reductive perturbation method and the Korteweg-de Vries hierarchy , 1995 .