Development of CO2 Protective Layers by Spray Pyrolysis for Ceramic Oxygen Transport Membranes

Ceramic mixed ionic–electronic conducting (MIEC) membranes enable very selective oxygen separation from air at high temperatures. Two major potential applications of oxygen‐transport membranes are: i) oxygen production for oxyfuel power plants, and, ii) integration within high‐temperature catalytic membrane reactors for methane or alkane upgrading by selective oxidative conversions. However, these applications involve contact with carbon‐bearing atmospheres and most state‐of‐the‐art highly permeable MIEC membranes do not tolerate operation under CO2‐rich environments due to carbonation processes. The present contribution shows our first attempts in the development of ceria‐based protective thin layers on monolithic LSCF membranes.

[1]  J. M. Serra,et al.  Study of CO2 stability and electrochemical oxygen activation of mixed conductors with low thermal expansion coefficient based on the TbBaCo3ZnO7+δ system , 2011 .

[2]  J. M. Serra,et al.  Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane , 2011 .

[3]  Shaomin Liu,et al.  High performance perovskite hollow fibres for oxygen separation , 2011 .

[4]  J. M. Serra,et al.  Application of electrolyte layers for solid oxide fuel cells by electron beam evaporation , 2010 .

[5]  L. Gauckler,et al.  Crystallization and Grain Growth Kinetics for Precipitation‐Based Ceramics: A Case Study on Amorphous Ceria Thin Films from Spray Pyrolysis , 2009 .

[6]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[7]  M. Cheng,et al.  A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2 , 2008 .

[8]  A. Freeman,et al.  Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and in-doped CdO thin films grown by MOCVD , 2008 .

[9]  Zhenwei Wang,et al.  Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges , 2007 .

[10]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[11]  S. Uhlenbruck,et al.  Thin film coating technologies of (Ce,Gd)O2-δ interlayers for application in ceramic high-temperature fuel cells , 2007 .

[12]  J. M. Serra,et al.  Preparation and properties of thin La1−xSrxCo1−yFeyO3−δ perovskitic membranes supported on tailored ceramic substrates , 2007 .

[13]  L. Gauckler,et al.  Microstructures and electrical conductivity of nanocrystalline ceria-based thin films , 2006 .

[14]  W. Haije,et al.  Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes , 2006 .

[15]  L. Gauckler,et al.  Spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes , 2006 .

[16]  R. Todorovska,et al.  Spray-pyrolysis deposition of CeO2 thin films using citric or tartaric complexes as starting materials , 2006 .

[17]  G. Corbel,et al.  Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor , 2005 .

[18]  E. Quartarone,et al.  Synthesis and characterization of Ce0.8Gd0.2O2−y polycrystalline and thin film materials , 2005 .

[19]  L. Gauckler,et al.  Solid oxide fuel cells with electrolytes prepared via spray pyrolysis , 2004 .

[20]  A. Kovalevsky,et al.  Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes , 2003 .

[21]  Toshio Suzuki,et al.  Microstructure–electrical conductivity relationships in nanocrystalline ceria thin films , 2002 .

[22]  Shuqiang Wang,et al.  Fabrication and Electrical Properties of YSZ Thin-Film Electrolyte Spin-Coated on Porous La0.6Sr0.4Co0.2Fe0.8O3 Substrate from Polymeric , 2002 .

[23]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[24]  Y. Qian,et al.  Preparation and characterization of cerium (IV) oxide thin films by spray prolysis method , 2000 .

[25]  S. Vassilev,et al.  Preparation of ceria films by spray pyrolysis method , 2000 .

[26]  John D. Bernardin,et al.  The Leidenfrost point : Experimental study and assessment of existing models , 1999 .

[27]  S. Gnanarajan,et al.  Evolution of texture of CeO2 thin film buffer layers prepared by ion-assisted deposition , 1999 .

[28]  W. Carter,et al.  Combustion chemical vapor deposition of CeO2 film , 1999 .

[29]  S. Thevuthasan,et al.  Growth and structure of epitaxial CeO2 by oxygen-plasma-assisted molecular beam epitaxy , 1999 .

[30]  S. Overbury,et al.  Surface studies of model supported catalysts: NO adsorption on Rh/CeO2(001) , 1997 .

[31]  G. Messing,et al.  Ceramic Powder Synthesis by Spray Pyrolysis , 1993 .

[32]  F. Cruz-Gandarilla,et al.  Synthesis and Characterization of Nanostructured Cerium Dioxide Thin Films Deposited by Ultrasonic Spray Pyrolysis , 2010 .

[33]  J. Høgsberg,et al.  Failure modes of thin supported membranes , 2007 .

[34]  Jianfeng Gao,et al.  Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications , 2004 .

[35]  M. Cassir,et al.  Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature — Solid oxide fuel cells (IT-SOFC) , 2003 .

[36]  James E. Flinn,et al.  Membrane Science and Technology , 1970, Springer US.