Spatial control of bacterial division-site placement

[1]  Yu-Ling Shih,et al.  The MreB and Min cytoskeletal‐like systems play independent roles in prokaryotic polar differentiation , 2005, Molecular microbiology.

[2]  M. Goldberg,et al.  Presence of Multiple Sites Containing Polar Material in Spherical Escherichia coli Cells That Lack MreB , 2005, Journal of bacteriology.

[3]  J. Beckwith,et al.  Diverse Paths to Midcell: Assembly of the Bacterial Cell Division Machinery , 2005, Current Biology.

[4]  P. D. de Boer,et al.  SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. , 2005, Molecular cell.

[5]  Donald A. Drew,et al.  A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Cassie Aldridge,et al.  The molecular biology of plastid division in higher plants. , 2005, Journal of experimental botany.

[7]  J. Lutkenhaus,et al.  Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA , 2005, Molecular microbiology.

[8]  E. Angert,et al.  Alternatives to binary fission in bacteria , 2005, Nature Reviews Microbiology.

[9]  Zemer Gitai,et al.  MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome , 2005, Cell.

[10]  S. E. Perry,et al.  Identification of a polar targeting determinant for Bacillus subtilis DivIVA , 2004, Molecular microbiology.

[11]  Ned S Wingreen,et al.  Min-protein oscillations in round bacteria , 2004, Physical biology.

[12]  L. Rothfield,et al.  Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection , 2004, Molecular microbiology.

[13]  Jan Kok,et al.  Subcellular sites for bacterial protein export , 2004, Molecular microbiology.

[14]  M. Homma,et al.  Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor–kinase cluster in an Escherichia coli cell , 2004, Molecular microbiology.

[15]  W. Margolin,et al.  FtsZ Exhibits Rapid Movement and Oscillation Waves in Helix-like Patterns in Escherichia coli , 2004, Current Biology.

[16]  J. Errington,et al.  Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis , 2004, Cell.

[17]  W. Margolin,et al.  Effects of Perturbing Nucleoid Structure on Nucleoid Occlusion-Mediated Toporegulation of FtsZ Ring Assembly , 2004, Journal of bacteriology.

[18]  Zemer Gitai,et al.  An actin-like gene can determine cell polarity in bacteria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Hilbert,et al.  Compartmentalization of Gene Expression during Bacillus subtilis Spore Formation , 2004, Microbiology and Molecular Biology Reviews.

[20]  K. Gerdes,et al.  Bacterial mitosis: partitioning protein ParA oscillates in spiral‐shaped structures and positions plasmids at mid‐cell , 2004, Molecular microbiology.

[21]  J. Gober,et al.  MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus , 2004, Molecular microbiology.

[22]  M. Goldberg,et al.  Evidence for polar positional information independent of cell division and nucleoid occlusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Graumann,et al.  Actin-like Proteins MreB and Mbl from Bacillus subtilis Are Required for Bipolar Positioning of Replication Origins , 2003, Current Biology.

[24]  N. Wingreen,et al.  Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. King,et al.  The MinD Membrane Targeting Sequence Is a Transplantable Lipid-binding Helix* , 2003, Journal of Biological Chemistry.

[26]  O. Espéli,et al.  SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli , 2003, Molecular microbiology.

[27]  T. Kruse,et al.  Dysfunctional MreB inhibits chromosome segregation in Escherichia coli , 2003, The EMBO journal.

[28]  T. Hashimoto Faculty Opinions recommendation of Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. , 2003 .

[29]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[30]  Yu-Ling Shih,et al.  Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. D. de Boer,et al.  ATP-Dependent Interactions between Escherichia coli Min Proteins and the Phospholipid Membrane In Vitro , 2003, Journal of bacteriology.

[32]  J. Lutkenhaus,et al.  A conserved sequence at the C‐terminus of MinD is required for binding to the membrane and targeting MinC to the septum , 2003, Molecular microbiology.

[33]  J. Errington,et al.  A role for division‐site‐selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis , 2002, Molecular microbiology.

[34]  R. Valluzzi,et al.  Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Harley H. McAdams,et al.  Generating and Exploiting Polarity in Bacteria , 2002, Science.

[36]  Margaret D Migocki,et al.  The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis , 2002, EMBO reports.

[37]  K. Pogliano,et al.  MinCD‐dependent regulation of the polarity of SpoIIIE assembly and DNA transfer , 2002, The EMBO journal.

[38]  G. King,et al.  Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Åkerlund,et al.  Effects of the Min system on nucleoid segregation in Escherichia coli. , 2002, Microbiology.

[40]  W. Margolin,et al.  Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli , 2002, Molecular microbiology.

[41]  Yu-Ling Shih,et al.  Division site placement in E.coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains , 2002, The EMBO journal.

[42]  J. Lutkenhaus,et al.  Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Losick,et al.  Asymmetric Cell Division in B. subtilis Involves a Spiral-like Intermediate of the Cytokinetic Protein FtsZ , 2002, Cell.

[44]  W. Margolin,et al.  Exploring intracellular space: function of the Min system in round‐shaped Escherichia coli , 2002, The EMBO journal.

[45]  J. Lutkenhaus,et al.  Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli , 2002, The EMBO journal.

[46]  Karsten Kruse,et al.  A dynamic model for determining the middle of Escherichia coli. , 2002, Biophysical journal.

[47]  M. Howard,et al.  Dynamic compartmentalization of bacteria: accurate division in E. coli. , 2001, Physical review letters.

[48]  H. Meinhardt,et al.  Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Errington Septation and chromosome segregation during sporulation in Bacillus subtilis. , 2001, Current opinion in microbiology.

[50]  R. Losick,et al.  A three‐protein inhibitor of polar septation during sporulation in Bacillus subtilis , 2001, Molecular microbiology.

[51]  C. Kay,et al.  Gonococcal MinD Affects Cell Division inNeisseria gonorrhoeae and Escherichia coli and Exhibits a Novel Self-Interaction , 2001, Journal of bacteriology.

[52]  Jan Löwe,et al.  Prokaryotic origin of the actin cytoskeleton , 2001, Nature.

[53]  J. Errington,et al.  Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. , 2001, Genes & development.

[54]  J. Maddock,et al.  Polarity in Action: Asymmetric Protein Localization in Bacteria , 2001, Journal of bacteriology.

[55]  J. Lutkenhaus,et al.  Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. , 2001, Molecular cell.

[56]  P A de Boer,et al.  Dynamic localization cycle of the cell division regulator MinE in Escherichia coli , 2001, The EMBO journal.

[57]  J. Errington,et al.  Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis , 2001, Molecular microbiology.

[58]  J. Errington,et al.  Control of Cell Shape in Bacteria Helical, Actin-like Filaments in Bacillus subtilis , 2001, Cell.

[59]  W. Margolin,et al.  Influence of the Nucleoid on Placement of FtsZ and MinE Rings in Escherichia coli , 2001, Journal of bacteriology.

[60]  L. Rothfield,et al.  The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Errington,et al.  Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast , 2000, The EMBO journal.

[62]  J. Errington,et al.  Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE , 2000, The EMBO journal.

[63]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[64]  S. Rowland,et al.  Membrane Redistribution of the Escherichia coli MinD Protein Induced by MinE , 2000, Journal of bacteriology.

[65]  J. Lutkenhaus,et al.  The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. D. de Boer,et al.  MinDE-Dependent Pole-to-Pole Oscillation of Division Inhibitor MinC in Escherichia coli , 1999, Journal of bacteriology.

[67]  J. Lutkenhaus,et al.  Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE , 1999, Molecular microbiology.

[68]  P A de Boer,et al.  Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. Margolin,et al.  FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization , 1999, Molecular microbiology.

[70]  W. Cook,et al.  Nucleoid-Independent Identification of Cell Division Sites in Escherichia coli , 1999, Journal of bacteriology.

[71]  K. Pogliano,et al.  A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation , 1999, Molecular microbiology.

[72]  J. Errington,et al.  Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. , 1998, Genes & development.

[73]  I. Barák,et al.  MinCD Proteins Control the Septation Process during Sporulation of Bacillus subtilis , 1998, Journal of bacteriology.

[74]  W. Donachie,et al.  Division Planes Alternate in Spherical Cells ofEscherichia coli , 1998, Journal of bacteriology.

[75]  Yuh Nung Jan,et al.  Asymmetric cell division , 1998, Nature.

[76]  L. Amos,et al.  Crystal structure of the bacterial cell-division protein FtsZ , 1998, Nature.

[77]  D. Raskin,et al.  The MinE Ring: An FtsZ-Independent Cell Structure Required for Selection of the Correct Division Site in E. coli , 1997, Cell.

[78]  R. Losick,et al.  Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ , 1997, Molecular microbiology.

[79]  J. Errington,et al.  The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division , 1997, Molecular microbiology.

[80]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[81]  G. Stewart,et al.  The divIVA minicell locus of Bacillus subtilis , 1997, Journal of bacteriology.

[82]  D. Ehrhardt,et al.  Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Lutkenhaus,et al.  FtsZ‐spirals and ‐arcs determine the shape of the invaginating septa in some mutants of Escherichia coli , 1996, Molecular microbiology.

[84]  R. Losick,et al.  Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. , 1996, Genes & development.

[85]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[86]  E. Bi,et al.  Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring , 1993, Journal of bacteriology.

[87]  R. Losick,et al.  Identification of Bacillus subtilis genes for septum placement and shape determination , 1992, Journal of bacteriology.

[88]  G. Stewart,et al.  The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (minCD) and cell shape (mreBCD) determinants , 1992, Journal of bacteriology.

[89]  P. Stragier,et al.  Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. , 1992, Journal of molecular biology.

[90]  P Youngman,et al.  Spo0A controls the sigma A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE , 1992, Journal of bacteriology.

[91]  Boer,et al.  Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli , 1992, Journal of bacteriology.

[92]  L. Rothfield,et al.  The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. , 1991, The EMBO journal.

[93]  N. Illing,et al.  Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment , 1991, Journal of bacteriology.

[94]  C. Woldringh,et al.  The Escherichia cohi minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids , 1990, Molecular and General Genetics MGG.

[95]  T. Ogura,et al.  Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells , 1989, Journal of bacteriology.

[96]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[97]  R. D'ari,et al.  Minicell-forming mutants of Escherichia coli: production of minicells and anucleate rods , 1988, Journal of bacteriology.

[98]  S. Tamaki,et al.  Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli , 1987, Journal of bacteriology.

[99]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[100]  R. D'ari,et al.  An inducible DNA replication–cell division coupling mechanism in E. coli , 1981, Nature.

[101]  H. Tzagoloff,et al.  Geometry of cell division in Staphylococcus aureus , 1977, Journal of bacteriology.

[102]  B. Winblad,et al.  Growth pattern and cell division in Neisseria gonorrhoeae , 1977, Journal of bacteriology.

[103]  W. D. Fisher,et al.  MINIATURE escherichia coli CELLS DEFICIENT IN DNA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[104]  W. H. Peterson,et al.  Products from the Fermentation of Glucose and Arabinose by Butyric Acid Anaerobes , 1935, Journal of bacteriology.

[105]  R. Losick,et al.  Sporulation Genes and Intercompartmental Regulation , 2002 .

[106]  Andrew D. Rutenberg,et al.  Dynamic Compartmentalization of Bacteria , 2001 .

[107]  G. Garrity Bergey's Manual of systematic bacteriology , 2001 .

[108]  R. Losick,et al.  Molecular genetics of sporulation in Bacillus subtilis. , 1996, Annual review of genetics.

[109]  F. Jacob-Dubuisson,et al.  Genetic, biochemical, and structural studies of biogenesis of adhesive pili in bacteria. , 1994, Methods in enzymology.

[110]  C. Woldringh,et al.  Toporegulation of bacterial division according to the nucleoid occlusion model. , 1991, Research in microbiology.