Socio-economic applications of finite state mean field games

In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.

[1]  Yann Bramoullé,et al.  Research Cycles , 2007, J. Econ. Theory.

[2]  Olivier Guéant Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs , 2011, 1110.3442.

[3]  Guy Barles,et al.  Hamilton-Jacobi equations : approximations, numerical analysis and applications : Cetraro, Italy 2011 , 2013 .

[4]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[5]  D. Gomes,et al.  Continuous Time Finite State Mean Field Games , 2012, 1203.3173.

[6]  Damien Besancenot,et al.  Paradigm Shift: A Mean Field Game Approach , 2015 .

[7]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[8]  Eitan Tadmor,et al.  New High-Resolution Semi-discrete Central Schemes for Hamilton—Jacobi Equations , 2000 .

[9]  Olivier Guéant From infinity to one: The reduction of some mean field games to a global control problem , 2011, 1110.3441.

[10]  Yves Achdou,et al.  Finite Difference Methods for Mean Field Games , 2013 .

[11]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[12]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[13]  P. Lions,et al.  Mean field games , 2007 .

[14]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[15]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[16]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[17]  Rémi Abgrall,et al.  Numerical Discretization of Boundary Conditions for First Order Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[18]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[19]  Knut Waagan,et al.  Convergence Rate of Monotone Numerical Schemes for Hamilton-Jacobi Equations with Weak Boundary Conditions , 2008, SIAM J. Numer. Anal..

[20]  D. Gomes,et al.  Discrete Time, Finite State Space Mean Field Games , 2010 .

[21]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[22]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[23]  Diogo A. Gomes,et al.  On the convergence of finite state mean-field games through Γ-convergence , 2014 .

[24]  Steven N. Durlauf,et al.  A formal model of theory choice in science , 1999 .