Orthounimodal Distributionally Robust Optimization: Representation, Computation and Multivariate Extreme Event Applications

This paper studies a basic notion of distributional shape known as orthounimodality (OU) and its use in shape-constrained distributionally robust optimization (DRO). As a key motivation, we argue how such type of DRO is well-suited to tackle multivariate extreme event estimation by giving statistically valid confidence bounds on target extremal probabilities. In particular, we explain how DRO can be used as a nonparametric alternative to conventional extreme value theory that extrapolates tails based on theoretical limiting distributions, which could face challenges in bias-variance control and other technical complications. We also explain how OU resolves the challenges in interpretability and robustness faced by existing distributional shape notions used in the DRO literature. Methodologically, we characterize the extreme points of the OU distribution class in terms of what we call OU sets and build a corresponding Choquet representation, which subsequently allows us to reduce OU-DRO into moment problems over infinite-dimensional random variables. We then develop, in the bivariate setting, a geometric approach to reduce such moment problems into finite dimension via a specially constructed variational problem designed to eliminate suboptimal solutions. Numerical results illustrate how our approach gives rise to valid and competitive confidence bounds for extremal probabilities. Keywords— multivariate extreme event analysis, orthounimodality, distributionally robust optimization, nonparametric, shape constraint

[1]  J. Beirlant,et al.  Threshold selection and trimming in extremes , 2019, Extremes.

[2]  Daniel Kuhn,et al.  Regularization via Mass Transportation , 2017, J. Mach. Learn. Res..

[3]  Dragan Cvetković,et al.  Modeling and Computer Simulation , 2019 .

[4]  F. Longin,et al.  From value at risk to stress testing : The extreme value approach Franc ß ois , 2000 .

[5]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[6]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[7]  Paul Embrechts,et al.  Bounds for functions of multivariate risks , 2006 .

[8]  Ludger Rüschendorf,et al.  Sharp Bounds for Sums of Dependent Risks , 2013, J. Appl. Probab..

[9]  S. Juneja,et al.  Entropy Approach to Incorporate Fat Tailed Constraints in Financial Models , 2010 .

[10]  Paul Dupuis,et al.  Robust Bounds on Risk-Sensitive Functionals via Rényi Divergence , 2013, SIAM/ASA J. Uncertain. Quantification.

[11]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[12]  Henry Lam,et al.  The empirical likelihood approach to quantifying uncertainty in sample average approximation , 2017, Oper. Res. Lett..

[13]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[14]  Henry Lam,et al.  Tail Analysis Without Parametric Models: A Worst-Case Perspective , 2015, Oper. Res..

[15]  M. Mandelkern Continuity of monotone functions. , 1982 .

[16]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[17]  Praprut Songchitruksa,et al.  The extreme value theory approach to safety estimation. , 2006, Accident; analysis and prevention.

[18]  Intrinsic estimation of the dependence structure for bivariate extremes , 1989 .

[19]  José H. Dulá,et al.  Bounding separable recourse functions with limited distribution information , 1991, Ann. Oper. Res..

[20]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[21]  Henry Lam,et al.  Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization , 2016, Oper. Res..

[22]  Henry Lam,et al.  Sensitivity to Serial Dependency of Input Processes: A Robust Approach , 2016, Manag. Sci..

[23]  J. Blanchet,et al.  On distributionally robust extreme value analysis , 2016, 1601.06858.

[24]  W. Polonik The silhouette, concentration functions and ML-density estimation under order restrictions , 1998 .

[25]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[26]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[27]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[28]  Alexander J. McNeil,et al.  Quantitative Risk Management: Concepts, Techniques and Tools Revised edition , 2015 .

[29]  P. Glasserman,et al.  Robust risk measurement and model risk , 2012 .

[30]  Nader Tajvidi,et al.  Extreme value statistics and wind storm losses: a case study. , 1997 .

[31]  R. Phelps Lectures on Choquet's Theorem , 1966 .

[32]  E. J. Gumbel,et al.  Analysis of Empirical Bivariate Extremal Distributions , 1964 .

[33]  Luc Devroye,et al.  Random variate generation for multivariate unimodal densities , 1997, TOMC.

[34]  Soumyadip Ghosh,et al.  Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees , 2015, Oper. Res..

[35]  Holger Rootzén,et al.  Accident Analysis and Prevention , 2013 .

[36]  Vishal Gupta,et al.  Robust sample average approximation , 2014, Math. Program..

[37]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[38]  Karthik Natarajan,et al.  Worst-Case Expected Shortfall with Univariate and Bivariate Marginals , 2017, INFORMS J. Comput..

[39]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[40]  Daniel Kuhn,et al.  Generalized Gauss inequalities via semidefinite programming , 2015, Mathematical Programming.

[41]  A. McNeil Extreme Value Theory for Risk Managers , 1999 .

[42]  S. Zacharya,et al.  Multivariate extrapolation in the offshore environment , 1998 .

[43]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[44]  Gerhard Winkler,et al.  Extreme Points of Moment Sets , 1988, Math. Oper. Res..

[45]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[46]  Ruiwei Jiang,et al.  Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity , 2018, Oper. Res..

[47]  M. A. Losada,et al.  A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method , 2012 .

[48]  Bowen Li,et al.  Ambiguous risk constraints with moment and unimodality information , 2019, Math. Program..

[49]  Xiaobo Li,et al.  Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals , 2015, Oper. Res..

[50]  J. Ivanovs,et al.  Robust bounds in multivariate extremes , 2016, 1608.04214.

[51]  Paul Embrechts,et al.  Bounds for Functions of Dependent Risks , 2006, Finance Stochastics.

[52]  Bin Wang,et al.  The complete mixability and convex minimization problems with monotone marginal densities , 2011, J. Multivar. Anal..

[53]  Nicole A. Lazar,et al.  Statistics of Extremes: Theory and Applications , 2005, Technometrics.

[54]  Jan Beirlant,et al.  Modeling large claims in non-life insurance , 1992 .

[55]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[56]  Richard L. Smith Threshold Methods for Sample Extremes , 1984 .

[57]  Güzin Bayraksan,et al.  Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .

[58]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[59]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[60]  J. Wellner,et al.  Entropy estimate for high-dimensional monotonic functions , 2005, math/0512641.

[61]  Harry Joe,et al.  Bivariate Threshold Methods for Extremes , 1992 .

[62]  Jón Dańıelsson,et al.  Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .

[63]  H. Lam,et al.  On Optimization over Tail Distributions , 2017, 1711.00573.

[64]  Richard L. Smith Extreme value theory based on the r largest annual events , 1986 .

[65]  Karthyek R. A. Murthy,et al.  Confidence Regions in Wasserstein Distributionally Robust Estimation , 2019, Biometrika.

[66]  Henry Lam,et al.  Robust Sensitivity Analysis for Stochastic Systems , 2013, Math. Oper. Res..

[67]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[68]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[69]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[70]  Vishal Gupta,et al.  Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization , 2019, Manag. Sci..

[71]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[72]  Andrew E. B. Lim,et al.  Robust Empirical Optimization is Almost the Same As Mean-Variance Optimization , 2015, Oper. Res. Lett..

[73]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[74]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[75]  Luc Devroye,et al.  On the risk of estimates for block decreasing densities , 2003 .

[76]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[77]  A. Kleywegt,et al.  Distributionally Robust Stochastic Optimization with Wasserstein Distance , 2016, Math. Oper. Res..

[78]  H. Drees,et al.  Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function , 1998 .

[79]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[80]  YeYinyu,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010 .

[81]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[82]  Weijun Xie O C ] 2 2 A ug 2 01 9 Tractable Reformulations of Distributionally Robust Two-stage Stochastic Programs with ∞ − Wasserstein Distance , 2019 .

[83]  John Duchi,et al.  Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach , 2016, Math. Oper. Res..

[84]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[85]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[86]  T. Sager Nonparametric Maximum Likelihood Estimation of Spatial Patterns , 1982 .

[87]  Viet Anh Nguyen,et al.  Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning , 2019, Operations Research & Management Science in the Age of Analytics.

[88]  M. KarthyekRajhaaA.,et al.  Robust Wasserstein profile inference and applications to machine learning , 2019, J. Appl. Probab..

[89]  W. Chan,et al.  Unimodality, convexity, and applications , 1989 .