Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts

We propose a new combinatorial description of the product of two Schur functions. In the particular case of the square of a Schur function SI, it allows to discriminate in a very natural way between the symmetric and antisymmetric parts of the square. In other words, it describes at the same time the expansion on the basis of Schur functions of the plethysms S2(SI) and Λ2(SI). More generally our combinatorial interpretation of the multiplicities cIJK = SISJ, SKleads to interesting q-analogues cIJK(q) of these multiplicities. The combinatorial objects that we use are domino tableaux, namely tableaux made up of 1 × 2 rectangular boxes filled with integers weakly increasing along the rows and strictly increasing along the columns. Standard domino tableaux have already been considered by many authors [33], [6], [34], [8], [1], but, to the best of our knowledge, the expression of the Littlewood-Richardson coefficients in terms of Yamanouchi domino tableaux is new, as well as the bijection described in Section 7, and the notion of the diagonal class of a domino tableau, defined in Section 8. This construction leads to the definition of a new family of symmetric functions (H-functions), whose relevant properties are summarized in Section 9.

[1]  A. Morris,et al.  Hall–Littlewood polynomials at roots of 1 and modular representations of the symmetric group , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  A. C. Aitken,et al.  Modular representations of symmetric groups , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Andrei Zelevinsky,et al.  Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .

[4]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[5]  D. E. Littlewood,et al.  Invariant theory, tensors and group characters , 1944, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  Adalbert Kerber,et al.  SYMMETRICA, an Object Oriented Computer-Algebra System for the Symmetric Group , 1992, J. Symb. Comput..

[7]  Alain Lascoux,et al.  Schubert polynomials and the Littlewood-Richardson rule , 1985 .

[8]  Christophe Carré The Rule of Littlewood-Richardson in a Construction of Berenstein-Zelevinsky , 1991, Int. J. Algebra Comput..

[9]  A. Kirillov On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers , 1988 .

[10]  F. D. Grosshans The Symbolic Method and Representation Theory , 1993 .

[11]  Anatol N. Kirillov,et al.  The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .

[12]  D. E. Ltttlewood Polynomial Concomitants and Invariant Matrices , 1936 .

[13]  A. Lascoux,et al.  Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité , 1993 .

[14]  Compositio Mathematica,et al.  On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .

[15]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[16]  I. Gel'fand,et al.  Polyhedra in the scheme space and the canonical basis in irreducible representations of gl3 , 1985 .

[17]  G. de B. Robinson,et al.  On the Representations of the Symmetric Group , 1938 .

[18]  A. N. Kirillov,et al.  SERIES GENERATRICES POUR LES TABLEAUX DE DOMINOS , 1994 .

[19]  Dan Barbasch,et al.  Primitive ideals and orbital integrals in complex classical groups , 1982 .

[20]  Gian-Carlo Rota,et al.  Invariant theory and superalgebras , 1987 .

[21]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[22]  G. B. Robinson,et al.  Representation theory of the symmetric group , 1961 .

[23]  A. Zelevinsky,et al.  A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .

[24]  Gordon James,et al.  Specht series for skew representations of symmetric groups , 1979 .