Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts
暂无分享,去创建一个
[1] A. Morris,et al. Hall–Littlewood polynomials at roots of 1 and modular representations of the symmetric group , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] A. C. Aitken,et al. Modular representations of symmetric groups , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3] Andrei Zelevinsky,et al. Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .
[4] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[5] D. E. Littlewood,et al. Invariant theory, tensors and group characters , 1944, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[6] Adalbert Kerber,et al. SYMMETRICA, an Object Oriented Computer-Algebra System for the Symmetric Group , 1992, J. Symb. Comput..
[7] Alain Lascoux,et al. Schubert polynomials and the Littlewood-Richardson rule , 1985 .
[8] Christophe Carré. The Rule of Littlewood-Richardson in a Construction of Berenstein-Zelevinsky , 1991, Int. J. Algebra Comput..
[9] A. Kirillov. On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers , 1988 .
[10] F. D. Grosshans. The Symbolic Method and Representation Theory , 1993 .
[11] Anatol N. Kirillov,et al. The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .
[12] D. E. Ltttlewood. Polynomial Concomitants and Invariant Matrices , 1936 .
[13] A. Lascoux,et al. Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité , 1993 .
[14] Compositio Mathematica,et al. On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .
[15] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[16] I. Gel'fand,et al. Polyhedra in the scheme space and the canonical basis in irreducible representations of gl3 , 1985 .
[17] G. de B. Robinson,et al. On the Representations of the Symmetric Group , 1938 .
[18] A. N. Kirillov,et al. SERIES GENERATRICES POUR LES TABLEAUX DE DOMINOS , 1994 .
[19] Dan Barbasch,et al. Primitive ideals and orbital integrals in complex classical groups , 1982 .
[20] Gian-Carlo Rota,et al. Invariant theory and superalgebras , 1987 .
[21] Dennis E. White,et al. A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.
[22] G. B. Robinson,et al. Representation theory of the symmetric group , 1961 .
[23] A. Zelevinsky,et al. A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .
[24] Gordon James,et al. Specht series for skew representations of symmetric groups , 1979 .