Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages λ, φ21 and P22☆

[1]  A. Campbell Sensitive mutants of bacteriophage λ , 1961 .

[2]  A. D. Kaiser,et al.  The c-region of coliphage 21. , 1967, Virology.

[3]  H. Ris,et al.  Mapping of Deletions and Substitutions in Heteroduplex DNA Molecules of Bacteriophage Lambda by Electron Microscopy , 1969, Science.

[4]  Jeffrey W. Roberts Termination Factor for RNA Synthesis , 1969, Nature.

[5]  D. Botstein,et al.  Superinfection exclusion by λ prophage in lysogens ofSalmonella typhimurium , 1971 .

[6]  R. Mural,et al.  Gene N regulator function of phage λimm21: Evidence that a site of N action differs from a site of N recognition☆ , 1973 .

[7]  F. Imamoto,et al.  Diversity of regulation of genetic transcription. II. Specific relaxation of polarity in read-through transcription of the translocated trp operon in bacteriophage lambda trp. , 1974, Journal of molecular biology.

[8]  N. Franklin,et al.  Altered reading of genetic signals fused to the N operon of bacteriophage lambda: genetic evidence for modification of polymerase by the protein product of the N gene. , 1974, Journal of molecular biology.

[9]  D. Botstein,et al.  Properties of hybrids between Salmonella phage P22 and coliphage λ , 1974, Nature.

[10]  Sequence of the promoter-operator proximal region of the major leftward RNA of bacteriophage lambda. , 1975, Nucleic acids research.

[11]  Tom Maniatis,et al.  Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda , 1975, Cell.

[12]  D. Botstein,et al.  Specificity of genetic elements controlling regulation of early functions in temperate bacteriophages. , 1976, Journal of molecular biology.

[13]  D. Apirion,et al.  Antitermination and absence of processing of the leftward transcript of coliphage lambda in the RNAase III-deficient host. , 1977, Journal of molecular biology.

[14]  W. Szybalski,et al.  Coliphage lambdanutL-: a unique class of mutants defective in the site of gene N product utilization for antitermination of leftward transcription. , 1978, Journal of molecular biology.

[15]  D. Court,et al.  The relationship between function and DNA sequence in an intercistronic regulatory region in phage λ , 1978, Nature.

[16]  S. Adhya,et al.  The activity of Salmonella phage P22 gene 24 product in Escherichia coli. , 1978, Virology.

[17]  G. Bennett,et al.  The N protein of bacteriophage lambda, defined by its DNA sequence, is highly basic. , 1979, Gene.

[18]  W. Szybalski,et al.  The site controlling the specificity of N action is outside the promoter-operator region: a triple hybrid phage lambda N21 imm434nin5. , 1979, Gene.

[19]  H. K. Das,et al.  Construction of plasmid cloning vehicles that promote gene expression from the bacteriophage lambda pL promoter. , 1979, Gene.

[20]  D Court,et al.  Regulatory sequences involved in the promotion and termination of RNA transcription. , 1979, Annual review of genetics.

[21]  R. Chisholm,et al.  A physical gene map of the bacteriophage P22 late region: genetic analysis of cloned fragments of P22 DNA. , 1980, Virology.

[22]  S. Ishii,et al.  A biochemical assay for the transcription-antitermination function of the coliphage λ N gene product , 1980 .

[23]  M. Ptashne,et al.  Operator sequences of bacteriophages P22 and 21. , 1980, Journal of molecular biology.

[24]  C. Richardson,et al.  Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7 , 1981, Cell.

[25]  Joyce Li,et al.  The nusA gene protein of Escherichia coli. Its identification and a demonstration that it interacts with the gene N transcription anti-termination protein of bacteriophage lambda. , 1981, Journal of molecular biology.

[26]  C. Yanofsky,et al.  The complete nucleotide sequence of the tryptophan operon of Escherichia coli. , 1981, Nucleic acids research.

[27]  R. Sauer,et al.  Primary structure of the phage P22 repressor and its gene c2. , 1981, Biochemistry.

[28]  The DNA sequence of the phage lambda genome between PL and the gene bet. , 1981, Nucleic acids research.

[29]  W. Fiers,et al.  Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. , 1981, Gene.

[30]  H. Lozeron,et al.  Multiple pathways of RNA processing and decay for the major leftward N- independent RNA transcript of coliphage lambda. , 1981, Virology.

[31]  Douglas L. Brutlag,et al.  SEQ: a nucleotide sequence analysis and recombination system , 1982, Nucleic Acids Res..

[32]  W. Szybalski,et al.  Sequence changes in coliphage lambda mutants affecting the nutL antitermination site and termination by tL1 and tL2. , 1982, Gene.

[33]  R. Doolittle,et al.  Homology among DNA-binding proteins suggests use of a conserved super-secondary structure , 1982, Nature.

[34]  F. Sanger,et al.  Nucleotide sequence of bacteriophage lambda DNA. , 1982, Journal of molecular biology.

[35]  F. Blattner,et al.  Nucleotide sequence of the Q gene and the Q to S intergenic region of bacteriophage lambda. , 1982, Virology.

[36]  Jeffrey W. Roberts,et al.  The phage λ Q gene product: Activity of a transcription antiterminator in vitro , 1982, Cell.

[37]  D. Friedman,et al.  Analysis of nutR: A region of phage lambda required for antitermination of transcription , 1982, Cell.

[38]  W. Szybalski,et al.  The tL2 cluster of transcription termination sites between genes bet and ral of coliphage lambda. , 1983, Virology.

[39]  S. Casjens,et al.  Additional Restriction Endonuclease Cleavage Sites on the Bacteriophage P22 Genome , 1983, Journal of virology.

[40]  H. R. Whiteley,et al.  Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA , 1983, Cell.

[41]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[42]  H. Lozeron,et al.  Regulation of transcription and DNA replication of bacteriophage phi 80. , 1983, Virology.

[43]  D Court,et al.  Removal of a terminator structure by RNA processing regulates int gene expression. , 1984, Journal of molecular biology.

[44]  D. Friedman,et al.  The nusA recognition site. Alteration in its sequence or position relative to upstream translation interferes with the action of the N antitermination function of phage lambda. , 1984, Journal of molecular biology.

[45]  N. Franklin “N” transcription antitermination proteins of bacteriophages λ, φ21 and P22 , 1985 .