Thickness Mapping of Eleven Retinal Layers in Normal Eyes Using Spectral Domain Optical Coherence Tomography

Purpose. This study was conducted to determine the thickness map of eleven retinal layers in normal subjects by spectral domain optical coherence tomography (SD-OCT) and evaluate their association with sex and age. Methods. Mean regional retinal thickness of 11 retinal layers were obtained by automatic three-dimensional diffusion-map-based method in 112 normal eyes of 76 Iranian subjects. Results. The thickness map of central foveal area in layer 1, 3, and 4 displayed the minimum thickness (P<0.005 for all). Maximum thickness was observed in nasal to the fovea of layer 1 (P<0.001) and in a circular pattern in the parafoveal retinal area of layers 2, 3 and 4 and in central foveal area of layer 6 (P<0.001). Temporal and inferior quadrants of the total retinal thickness and most of other quadrants of layer 1 were significantly greater in the men than in the women. Surrounding eight sectors of total retinal thickness and a limited number of sectors in layer 1 and 4 significantly correlated with age. Conclusion. SD-OCT demonstrated the three-dimensional thickness distribution of retinal layers in normal eyes. Thickness of layers varied with sex and age and in different sectors. These variables should be considered while evaluating macular thickness.

[1]  Sumit Sharma,et al.  Comparing retinal thickness measurements using automated fast macular thickness map versus six-radial line scans with manual measurements. , 2009, Ophthalmology.

[2]  Vikram S Brar,et al.  Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[3]  D. Bok,et al.  The retinal pigment epithelium: a versatile partner in vision , 1993, Journal of Cell Science.

[4]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[5]  Naoyuki Maeda,et al.  Three-dimensional profile of macular retinal thickness in normal Japanese eyes. , 2010, Investigative ophthalmology & visual science.

[6]  Paul L. Rosin,et al.  Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model , 2011, Biomedical optics express.

[7]  R. Ansari,et al.  Thickness profiles of retinal layers by optical coherence tomography image segmentation. , 2008, American journal of ophthalmology.

[8]  Wolfgang Drexler,et al.  Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. , 2006, American journal of ophthalmology.

[9]  Joachim Hornegger,et al.  Automatic Nerve Fiber Layer Segmentation and Geometry Correction on Spectral Domain OCT Images Using Fuzzy C-Means Clustering , 2008 .

[10]  Barbara Polaczek-Krupa,et al.  [Application of retinal thickness analyzer (RTA) in diagnosis and treatment monitoring in retinal diseases]. , 2006, Klinika oczna.

[11]  William J Feuer,et al.  Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. , 2009, Ophthalmology.

[12]  Mahnaz Shahidi,et al.  Thickness mapping of retinal layers by spectral-domain optical coherence tomography. , 2010, American journal of ophthalmology.

[13]  J. Pulido,et al.  Retinal topography and thickness mapping in atrophic age related macular degeneration , 2002, The British journal of ophthalmology.

[14]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[15]  Richard B Rosen,et al.  INNER SEGMENT–OUTER SEGMENT JUNCTIONAL LAYER INTEGRITY AND CORRESPONDING RETINAL SENSITIVITY IN DRY AND WET FORMS OF AGE-RELATED MACULAR DEGENERATION , 2010, Retina.

[16]  A. Cavallerano,et al.  Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy , 2008, Clinical & experimental ophthalmology.

[17]  David Huang,et al.  Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. , 2006, Ophthalmology.

[18]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[19]  Boris Hermann,et al.  Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[20]  Milan Sonka,et al.  Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map , 2012, Medical Image Anal..

[21]  J. Duker,et al.  Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. , 2006, Archives of ophthalmology.

[22]  Srinivas R Sadda,et al.  Evaluation of optical coherence tomography retinal thickness parameters for use in clinical trials for neovascular age-related macular degeneration. , 2009, Investigative ophthalmology & visual science.

[23]  Newton Kara-José,et al.  Retinal thickness assessed by optical coherence tomography (OCT) in pseudophakic macular edema. , 2006, Arquivos brasileiros de oftalmologia.

[24]  Barrett Katz Optic Nerve Disorders Ophthalmology Monographs #10 , 1998, Neurology.

[25]  Ashavini M. Pavaskar Tools for creating wide-field views of the human retina using Optical Coherence Tomography , 2011 .

[26]  Pratap Challa,et al.  Correlation among Retinal Thickness, Optic Disc, and Visual Field in Glaucoma Patients and Suspects: A Pilot Study , 2003, Journal of glaucoma.

[27]  Kim L. Boyer,et al.  Retinal thickness measurements from optical coherence tomography using a Markov boundary model , 2001, IEEE Transactions on Medical Imaging.

[28]  Kim L. Boyer,et al.  Automatic recovery of the optic nervehead geometry in optical coherence tomography , 2006, IEEE Transactions on Medical Imaging.

[29]  Masaki Tanito,et al.  Reduction of posterior pole retinal thickness in glaucoma detected using the Retinal Thickness Analyzer. , 2004, Ophthalmology.

[30]  Douglas R. Anderson,et al.  Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. , 2011, Ophthalmology.

[31]  Rob G L van der Heijde,et al.  RETINAL THICKNESS ANALYSIS (RTA): An Objective Method to Assess and Quantify the Retinal Thickness in Healthy Controls and in Diabetics Without Diabetic Retinopathy , 2002, Retina.

[32]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[33]  B. Hoogwerf,et al.  Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. , 1996, Archives of ophthalmology.

[34]  Peter J Ringens,et al.  Precision and reliability of retinal thickness measurements in foveal and extrafoveal areas of healthy and diabetic eyes. , 2008, Investigative ophthalmology & visual science.

[35]  R N Weinreb,et al.  Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. , 2001, Survey of ophthalmology.

[36]  Bernd Hamann,et al.  Segmentation of Three-dimensional Retinal Image Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[37]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[38]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[39]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[40]  M. Shahidi,et al.  Quantitative thickness measurement of retinal layers imaged by optical coherence tomography. , 2005, American journal of ophthalmology.

[41]  J. Duker,et al.  COMPARISON OF SPECTRAL/FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY INSTRUMENTS FOR ASSESSMENT OF NORMAL MACULAR THICKNESS , 2010, Retina.

[42]  W. Freeman,et al.  DISRUPTION OF THE PHOTORECEPTOR INNER SEGMENT/OUTER SEGMENT LAYER ON SPECTRAL DOMAIN-OPTICAL COHERENCE TOMOGRAPHY IS A PREDICTOR OF POOR VISUAL ACUITY IN PATIENTS WITH EPIRETINAL MEMBRANES , 2010, Retina.

[43]  Asok Nataraj,et al.  Retinal Morphological Changes Of Patients With X-Linked Retinoschisis ( XLRS ) Evaluated By Fourier Domain Optical Coherence Tomography ( FD-OCT ) , 2011 .

[44]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[45]  松本 英孝 Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy , 2010 .

[46]  R C Pruett,et al.  Monochromatic ophthalmoscopy and fundus photography. The normal fundus. , 1977, Archives of ophthalmology.

[47]  Teresa C. Chen,et al.  Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.

[48]  P. Henkind,et al.  Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. , 1967, The British journal of ophthalmology.

[49]  Robert J Zawadzki,et al.  Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. , 2008, Investigative ophthalmology & visual science.