maT and mosquito transposons in cnidarians: evolutionary history and intraspecific differences

[1]  A. S. Thind,et al.  Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq , 2022, Functional & Integrative Genomics.

[2]  Yifan Ren Regulatory mechanism and biological function of UHRF1–DNMT1-mediated DNA methylation , 2022, Functional & Integrative Genomics.

[3]  M. Puzakov,et al.  Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians , 2022, Molecular Biology.

[4]  D. Hayward,et al.  The Role of DNA Methylation in Genome Defense in Cnidaria and Other Invertebrates , 2022, Molecular biology and evolution.

[5]  M. Puzakov,et al.  The IS630/Tc1/mariner transposons in three ctenophore genomes. , 2021, Molecular phylogenetics and evolution.

[6]  Xiaoyan Wang,et al.  Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. , 2021, Molecular phylogenetics and evolution.

[7]  Z. Ivics,et al.  Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals , 2020, Mobile DNA.

[8]  Elverson Soares de Melo,et al.  Mosquito genomes are frequently invaded by transposable elements through horizontal transfer , 2020, PLoS genetics.

[9]  Z. Ivics,et al.  Multiple Invasions of Visitor, a DD41D Family of Tc1/mariner Transposons, throughout the Evolution of Vertebrates. , 2020, Genome biology and evolution.

[10]  A. Hayward,et al.  Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements , 2020, Mobile DNA.

[11]  Xiaoyan Wang,et al.  Traveler, a New DD35E Family of Tc1/Mariner Transposons, Invaded Vertebrates Very Recently , 2020, Genome biology and evolution.

[12]  K. Kojima Structural and sequence diversity of eukaryotic transposable elements. , 2019, Genes & genetic systems.

[13]  O. Simakov,et al.  Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra , 2019, Proceedings of the National Academy of Sciences.

[14]  G. Valente,et al.  DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome , 2019, Chromosoma.

[15]  J. Blumenstiel Birth, School, Work, Death, and Resurrection: The Life Stages and Dynamics of Transposable Element Proliferation , 2019, Genes.

[16]  Daniel W. A. Buchan,et al.  The PSIPRED Protein Analysis Workbench: 20 years on , 2019, Nucleic Acids Res..

[17]  D. Morris Ten things you should know about type 2 diabetes – part 2 , 2019, Independent Nurse.

[18]  I. Arkhipova,et al.  Giant Transposons in Eukaryotes: Is Bigger Better? , 2019, Genome biology and evolution.

[19]  G. Bourque,et al.  Ten things you should know about transposable elements , 2018, Genome Biology.

[20]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[21]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[22]  D. Ray,et al.  Evolution and Diversity of Transposable Elements in Vertebrate Genomes , 2017, Genome biology and evolution.

[23]  Yi-Hong Shen,et al.  Identification and evolutionary history of the DD41D transposons in insects , 2016, Genes & Genomics.

[24]  Kazutaka Katoh,et al.  Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees , 2016, Bioinform..

[25]  T. Vellai,et al.  The mechanism of ageing: primary role of transposable elements in genome disintegration , 2015, Cellular and Molecular Life Sciences.

[26]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[27]  Haifan Lin,et al.  PIWI proteins and PIWI-interacting RNAs in the soma , 2014, Nature.

[28]  R. Reenan,et al.  PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells , 2013, Proceedings of the National Academy of Sciences.

[29]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[30]  M. F. Ortiz,et al.  Horizontal Transposon Transfer in Eukarya: Detection, Bias, and Perspectives , 2012, Genome biology and evolution.

[31]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[32]  Hiroshi Watanabe,et al.  Immortality and the base of multicellular life: Lessons from cnidarian stem cells. , 2009, Seminars in cell & developmental biology.

[33]  Samuel Venner,et al.  Dynamics of transposable elements: towards a community ecology of the genome. , 2009, Trends in genetics : TIG.

[34]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[35]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[36]  Z. Izsvák,et al.  Molecular domestication of transposable elements: From detrimental parasites to useful host genes , 2009, Cellular and Molecular Life Sciences.

[37]  J. Jurka,et al.  A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.

[38]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[39]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[40]  I. K. Jordan,et al.  Exaptation of protein coding sequences from transposable elements. , 2007, Genome dynamics.

[41]  Z. Nagy,et al.  Analysis of the N‐terminal DNA binding domain of the IS30 transposase , 2004, Molecular microbiology.

[42]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[43]  E. Gueguen,et al.  The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding. , 2004, Nucleic acids research.

[44]  V. Schmid,et al.  The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. , 2004, The International journal of developmental biology.

[45]  L. Dini,et al.  Morphological and ultrastructural analysis of Turritopsis nutricula during life cycle reversal. , 2003, Tissue & cell.

[46]  J. Oakeshott,et al.  maT--a clade of transposons intermediate between mariner and Tc1. , 2002, Molecular biology and evolution.

[47]  Z. Tu,et al.  Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. , 2001, Genetics.

[48]  M. Meselson,et al.  Transposable elements in sexual and ancient asexual taxa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. G. Kidwell,et al.  Transposable elements and host genome evolution. , 2000, Trends in ecology & evolution.

[50]  R. Plasterk,et al.  Resident aliens: the Tc1/mariner superfamily of transposable elements. , 1999, Trends in genetics : TIG.

[51]  Eva Jablonka,et al.  The Role of DNA Methylation in Invertebrates: Developmental Regulation or Genome Defense? , 1998 .

[52]  D. Martinez,et al.  Mortality Patterns Suggest Lack of Senescence in Hydra , 1998, Experimental Gerontology.

[53]  R. Plasterk,et al.  Molecular Reconstruction of Sleeping Beauty , a Tc1-like Transposon from Fish, and Its Transposition in Human Cells , 1997, Cell.

[54]  H. Robertson,et al.  Multiple Mariner transposons in flatworms and hydras are related to those of insects. , 1997, The Journal of heredity.

[55]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[56]  R. Chalmers,et al.  Mariner and the ITm Superfamily of Transposons , 2015, Microbiology spectrum.

[57]  Z. Izsvák,et al.  Sleeping Beauty Transposition. , 2015, Microbiology spectrum.

[58]  C. David,et al.  A genomic view of 500 million years of cnidarian evolution. , 2011, Trends in genetics : TIG.

[59]  Z. Tu,et al.  Expanding the Diversity of the IS 630-Tc 1-mariner Superfamily : Discovery of a Unique DD 37 E Transposon and Reclassification of the DD 37 D and DD 39 D Transposons , 2001 .

[60]  L. Sinzellea,et al.  Molecular domestication of transposable elements : From detrimental parasites to useful host genes , 2022 .