Regularity of Kähler–Ricci flows on Fano manifolds
暂无分享,去创建一个
[1] Michael T. Anderson. Convergence and rigidity of manifolds under Ricci curvature bounds , 1990 .
[2] S. Donaldson,et al. Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2\pi\ and completion of the main proof , 2013, 1302.0282.
[3] S. Yau. On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .
[4] 二木 昭人. Kähler-Einstein metrics and integral invariants , 1987 .
[5] T. Colding,et al. Sharp Holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications , 2011, 1102.5003.
[6] Alexander Grigor cprimeyan. Gaussian upper bounds for the heat kernel on arbitrary manifolds , 1997 .
[7] G. Tian,et al. BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN) , 2008, Journal of the Institute of Mathematics of Jussieu.
[8] S. Paul. A Numerical Criterion for K-Energy maps of Algebraic Manifolds , 2012, 1210.0924.
[9] Antonio G. Ache. On the uniqueness of asymptotic limits of the Ricci flow , 2012, 1211.3387.
[10] O. Rothaus,et al. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators , 1981 .
[11] C. Croke,et al. Some isoperimetric inequalities and eigenvalue estimates , 1980 .
[12] Degeneration of K\"ahler-Ricci solitons , 2010, 1006.1577.
[13] G. Tian,et al. Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold , 2011, 1107.4018.
[14] J. Cheeger,et al. On the singularities of spaces with bounded Ricci curvature , 2002 .
[15] B. Chow,et al. The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects , 2010 .
[16] B. Berndtsson. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry , 2013, 1303.4975.
[17] Jeff Cheeger,et al. On the structure of spaces with Ricci curvature bounded below. II , 2000 .
[18] J. Cheeger. Integral bounds on curvature, elliptic estimates and rectifiability of singular sets , 2003 .
[19] G. Tian,et al. Regularity of K\"ahler-Ricci flow , 2013, 1304.2651.
[20] Huai-Dong Cao,et al. Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .
[21] Wan-Xiong Shi. Ricci deformation of the metric on complete noncompact Riemannian manifolds , 1989 .
[22] G. Tian,et al. Regularity of the Kähler–Ricci flow , 2013 .
[23] G. Tian,et al. Degeneration of Kähler–Ricci Solitons , 2010 .
[24] G. Tian. Canonical Metrics in Kahler Geometry , 2000 .
[25] Deane Yang. Convergence of Riemannian manifolds with integral bounds on curvature II , 1992 .
[26] G. Tian. Existence of Einstein Metrics on Fano Manifolds , 2012 .
[27] R. Hamilton. A Compactness Property for Solutions of the Ricci Flow , 1995 .
[28] Alexander Grigor'yan,et al. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .
[29] G. Tian. Kähler-Einstein metrics on algebraic manifolds , 1996 .
[30] Shing-Tung Yau,et al. A lower bound for the heat kernel , 1981 .
[31] A heat kernel lower bound for integral Ricci curvature , 1998, math/9810156.
[32] B. Wang,et al. On the structure of almost einstein manifolds , 2012, 1202.2912.
[33] Qi S. Zhang. A uniform Sobolev inequality under Ricci flow , 2007, 0706.1594.
[34] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[35] Zhenlei Zhang. KÄhler Ricci Flow on Fano Manifolds with Vanished Futaki Invariants , 2010, 1010.5959.
[36] T. Colding. Ricci curvature and volume convergence , 1997 .
[37] G. Tian. Kähler-Einstein metrics with positive scalar curvature , 1997 .
[38] Yi Zhang. Decomposition Theory , 2012, 1212.2912.
[39] T. Mabuchi. K-ENERGY MAPS INTEGRATING FUTAKI INYARIANTS , 1986 .
[40] P. Petersen,et al. Relative Volume Comparison with Integral Curvature Bounds , 1997 .
[41] P. Petersen,et al. Analysis and geometry on manifolds with integral Ricci curvature bounds. II , 2000 .
[42] G. Tian. K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.
[43] P. Eyssidieux,et al. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).
[44] S. Donaldson,et al. Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities , 2012, 1211.4566.
[45] Peng Lu,et al. The Ricci Flow: Techniques and Applications , 2007 .
[46] G. Tian,et al. Convergence of Kähler-Ricci flow , 2007 .
[47] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry , 2014 .
[48] R. Ye. The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $$\lambda _0(g_0)=0$$λ0(g0)=0 , 2007, 0708.2005.
[49] G. Tian,et al. Convergence of the Kähler–Ricci flow on Fano manifolds , 2012 .
[50] S. Paul. Stable Pairs and Coercive Estimates for The Mabuchi Functional , 2013, 1308.4377.
[51] G. Tian. On Calabi's conjecture for complex surfaces with positive first Chern class , 1990 .
[52] G. Tian. Partial C0-Estimate for Kähler–Einstein Metrics , 2013 .
[53] Jeff Cheeger,et al. Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .
[54] S. Donaldson,et al. Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 , 2012, 1212.4714.
[55] S. Paul. Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics , 2008, 0811.2548.
[56] N. Šešum. Convergence of a Kahler-Ricci flow , 2005 .
[57] S. Donaldson,et al. Integral bounds on curvature and Gromov–Hausdorff limits , 2011, 1112.1594.
[58] B. Wang,et al. Space of Ricci Flows I , 2009, 0902.1545.
[59] P. Petersen. Convergence Theorems in Riemannian Geometry , 1997 .
[60] Arthur L. Besse,et al. Einstein Manifolds and Topology , 1987 .
[61] Jian Song,et al. Degeneration of Kahler-Ricci solitons on Fano manifolds , 2012, 1211.5849.
[62] R. Ye. The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow , 2015 .