Regularity of Kähler–Ricci flows on Fano manifolds

In this paper, we will establish a regularity theory for the Kähler–Ricci flow on Fano n-manifolds with Ricci curvature bounded in Lp-norm for some $${p > n}$$p>n. Using this regularity theory, we will also solve a long-standing conjecture for dimension 3. As an application, we give a new proof of the Yau–Tian–Donaldson conjecture for Fano 3-manifolds. The results have been announced in [45].

[1]  Michael T. Anderson Convergence and rigidity of manifolds under Ricci curvature bounds , 1990 .

[2]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2\pi\ and completion of the main proof , 2013, 1302.0282.

[3]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[4]  二木 昭人 Kähler-Einstein metrics and integral invariants , 1987 .

[5]  T. Colding,et al.  Sharp Holder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications , 2011, 1102.5003.

[6]  Alexander Grigor cprimeyan Gaussian upper bounds for the heat kernel on arbitrary manifolds , 1997 .

[7]  G. Tian,et al.  BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN) , 2008, Journal of the Institute of Mathematics of Jussieu.

[8]  S. Paul A Numerical Criterion for K-Energy maps of Algebraic Manifolds , 2012, 1210.0924.

[9]  Antonio G. Ache On the uniqueness of asymptotic limits of the Ricci flow , 2012, 1211.3387.

[10]  O. Rothaus,et al.  Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators , 1981 .

[11]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .

[12]  Degeneration of K\"ahler-Ricci solitons , 2010, 1006.1577.

[13]  G. Tian,et al.  Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold , 2011, 1107.4018.

[14]  J. Cheeger,et al.  On the singularities of spaces with bounded Ricci curvature , 2002 .

[15]  B. Chow,et al.  The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects , 2010 .

[16]  B. Berndtsson A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry , 2013, 1303.4975.

[17]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[18]  J. Cheeger Integral bounds on curvature, elliptic estimates and rectifiability of singular sets , 2003 .

[19]  G. Tian,et al.  Regularity of K\"ahler-Ricci flow , 2013, 1304.2651.

[20]  Huai-Dong Cao,et al.  Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .

[21]  Wan-Xiong Shi Ricci deformation of the metric on complete noncompact Riemannian manifolds , 1989 .

[22]  G. Tian,et al.  Regularity of the Kähler–Ricci flow , 2013 .

[23]  G. Tian,et al.  Degeneration of Kähler–Ricci Solitons , 2010 .

[24]  G. Tian Canonical Metrics in Kahler Geometry , 2000 .

[25]  Deane Yang Convergence of Riemannian manifolds with integral bounds on curvature II , 1992 .

[26]  G. Tian Existence of Einstein Metrics on Fano Manifolds , 2012 .

[27]  R. Hamilton A Compactness Property for Solutions of the Ricci Flow , 1995 .

[28]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[29]  G. Tian Kähler-Einstein metrics on algebraic manifolds , 1996 .

[30]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[31]  A heat kernel lower bound for integral Ricci curvature , 1998, math/9810156.

[32]  B. Wang,et al.  On the structure of almost einstein manifolds , 2012, 1202.2912.

[33]  Qi S. Zhang A uniform Sobolev inequality under Ricci flow , 2007, 0706.1594.

[34]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[35]  Zhenlei Zhang KÄhler Ricci Flow on Fano Manifolds with Vanished Futaki Invariants , 2010, 1010.5959.

[36]  T. Colding Ricci curvature and volume convergence , 1997 .

[37]  G. Tian Kähler-Einstein metrics with positive scalar curvature , 1997 .

[38]  Yi Zhang Decomposition Theory , 2012, 1212.2912.

[39]  T. Mabuchi K-ENERGY MAPS INTEGRATING FUTAKI INYARIANTS , 1986 .

[40]  P. Petersen,et al.  Relative Volume Comparison with Integral Curvature Bounds , 1997 .

[41]  P. Petersen,et al.  Analysis and geometry on manifolds with integral Ricci curvature bounds. II , 2000 .

[42]  G. Tian K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.

[43]  P. Eyssidieux,et al.  Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[44]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities , 2012, 1211.4566.

[45]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[46]  G. Tian,et al.  Convergence of Kähler-Ricci flow , 2007 .

[47]  Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry , 2014 .

[48]  R. Ye The Logarithmic Sobolev Inequality Along the Ricci Flow: The Case $$\lambda _0(g_0)=0$$λ0(g0)=0 , 2007, 0708.2005.

[49]  G. Tian,et al.  Convergence of the Kähler–Ricci flow on Fano manifolds , 2012 .

[50]  S. Paul Stable Pairs and Coercive Estimates for The Mabuchi Functional , 2013, 1308.4377.

[51]  G. Tian On Calabi's conjecture for complex surfaces with positive first Chern class , 1990 .

[52]  G. Tian Partial C0-Estimate for Kähler–Einstein Metrics , 2013 .

[53]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[54]  S. Donaldson,et al.  Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 , 2012, 1212.4714.

[55]  S. Paul Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics , 2008, 0811.2548.

[56]  N. Šešum Convergence of a Kahler-Ricci flow , 2005 .

[57]  S. Donaldson,et al.  Integral bounds on curvature and Gromov–Hausdorff limits , 2011, 1112.1594.

[58]  B. Wang,et al.  Space of Ricci Flows I , 2009, 0902.1545.

[59]  P. Petersen Convergence Theorems in Riemannian Geometry , 1997 .

[60]  Arthur L. Besse,et al.  Einstein Manifolds and Topology , 1987 .

[61]  Jian Song,et al.  Degeneration of Kahler-Ricci solitons on Fano manifolds , 2012, 1211.5849.

[62]  R. Ye The Logarithmic Sobolev and Sobolev Inequalities Along the Ricci Flow , 2015 .