On the design of reversible QDCA systems.

This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

[1]  Peter M. Kogge,et al.  Reversible computation with quantum-dot cellular automata (QCA) , 2005, CF '05.

[2]  Peter M. Kogge,et al.  A Potentially Implementable FPGA for Quantum-Dot Cellular Automata , 2002 .

[3]  Michael Niemier,et al.  DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA , 2000 .

[4]  Kenneth L. Shepard,et al.  Design of resonant global clock distributions , 2003, Proceedings 21st International Conference on Computer Design.

[5]  Craig S. Lent,et al.  An architecture for molecular computing using quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[6]  Peter M. Kogge,et al.  Problems in designing with QCAs: Layout = Timing , 2001 .

[7]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[8]  Gary H. Bernstein,et al.  Observation of switching in a quantum-dot cellular automata cell , 1999 .

[9]  Peter M. Kogge,et al.  Strategy and prototype tool for doing fault modeling in a nano-technology , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[10]  Peter M. Kogge,et al.  Bouncing threads: merging a new execution model into a nanotechnology memory , 2003, IEEE Computer Society Annual Symposium on VLSI, 2003. Proceedings..

[11]  Vassil S. Dimitrov,et al.  RAM Design Using Quantum-Dot Cellular Automata , 2003 .

[12]  Z. Li,et al.  Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. , 2003, Inorganic chemistry.

[13]  T.Y. Nguyen,et al.  Resonant clocking using distributed parasitic capacitance , 2004, IEEE Journal of Solid-State Circuits.

[14]  Michael T. Niemier,et al.  The "4-diamond circuit" - a minimally complex nano-scale computational building block in QCA , 2004, IEEE Computer Society Annual Symposium on VLSI.

[15]  Andrew B. Kahng,et al.  Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions , 2004, Proceedings. 41st Design Automation Conference, 2004..

[16]  C. Lent,et al.  Maxwell's demon and quantum-dot cellular automata , 2003 .

[17]  E. M. Buturla,et al.  VLSI wiring capacitance , 1985 .

[18]  P. Kogge,et al.  Memory in Motion : A Study of Storage Structures in QCA , 2002 .

[19]  Fabrizio Lombardi,et al.  Design of a QCA memory with parallel read/serial write , 2005, IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05).

[20]  Michael T. Niemier,et al.  Logic in wire: using quantum dots to implement a microprocessor , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[21]  Peter M. Kogge,et al.  Exploring and exploiting wire-level pipelining in emerging technologies , 2001, ISCA 2001.

[22]  Jacob K. White,et al.  FastCap: a multipole accelerated 3-D capacitance extraction program , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Michael T. Niemier,et al.  Problems in designing with QCAs: Layout = Timing , 2001, Int. J. Circuit Theory Appl..

[24]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[25]  Sarah Elizabeth Frost Memory Architecture for Quantum-dot Cellular Automata , 2005 .

[26]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[27]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[28]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[29]  Peter M. Kogge,et al.  Logic in wire: using quantum dots to implement a microprocessor , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[30]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[31]  G. Snider,et al.  A self‐consistent solution of Schrödinger–Poisson equations using a nonuniform mesh , 1990 .

[32]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[33]  Peter Kogge,et al.  The effects of a new technology on the design, organization, and architectures of computing systems , 2003 .

[34]  Gary H. Bernstein,et al.  Experimental demonstration of a binary wire for quantum-dot cellular automata , 1999 .

[35]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[36]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[37]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[38]  C. Lent,et al.  Quantum‐Dot Cellular Automata at a Molecular Scale , 2002 .

[39]  Hiroto Yasuura,et al.  A bus delay reduction technique considering crosstalk , 2000, DATE '00.