A social tag clustering method based on common co-occurrence group similarity

Social tagging systems are widely applied in Web 2.0. Many users use these systems to create, organize, manage, and share Internet resources freely. However, many ambiguous and uncontrolled tags produced by social tagging systems not only worsen users’ experience, but also restrict resources’ retrieval efficiency. Tag clustering can aggregate tags with similar semantics together, and help mitigate the above problems. In this paper, we first present a common co-occurrence group similarity based approach, which employs the ternary relation among users, resources, and tags to measure the semantic relevance between tags. Then we propose a spectral clustering method to address the high dimensionality and sparsity of the annotating data. Finally, experimental results show that the proposed method is useful and efficient.

[1]  Michael J. Muller,et al.  Getting our head in the clouds: toward evaluation studies of tagclouds , 2007, CHI.

[2]  Marco Colombetti,et al.  Using WordNet to turn a Folksonomy into a Hierarchy of Concepts , 2007, SWAP.

[3]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  C. Mastroianni,et al.  A reference architecture for knowledge management-based Web systems , 2003, Proceedings of the Fourth International Conference on Web Information Systems Engineering, 2003. WISE 2003..

[5]  Wolfgang Nejdl,et al.  Can all tags be used for search? , 2008, CIKM '08.

[6]  Céline Van Damme,et al.  FolksOntology : An Integrated Approach for Turning Folksonomies into Ontologies , 2007 .

[7]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[8]  Zongda Wu,et al.  KIPTC: a kernel information propagation tag clustering algorithm , 2013, Journal of Intelligent Information Systems.

[9]  C. Ding,et al.  Spectral relaxation models and structure analysis for K-way graph clustering and bi-clustering , 2001 .

[10]  Manfred Tscheligi,et al.  Comparing Different Layouts of Tag Clouds: Findings on Visual Perception , 2009, HCIV.

[11]  Kathrin Knautz,et al.  Tag Clusters as Information Retrieval Interfaces , 2010, 2010 43rd Hawaii International Conference on System Sciences.

[12]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[13]  Steve Cayzer,et al.  Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access , 2007, WWW 2007.

[14]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[15]  Alfredo Cuzzocrea,et al.  Combining multidimensional user models and knowledge representation and management techniques for making web services knowledge-aware , 2006, Web Intell. Agent Syst..

[16]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[17]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[18]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[19]  Isabella Peters,et al.  Folksonomies - Indexing and Retrieval in Web 2.0 , 2009, Knowledge and Information.

[20]  Adam Mathes,et al.  Folksonomies-Cooperative Classification and Communication Through Shared Metadata , 2004 .

[21]  Davide Eynard,et al.  An integrated approach to discover tag semantics , 2011, SAC.

[22]  Dinan Gunawardena,et al.  Social tags: meaning and suggestions , 2008, CIKM '08.

[23]  Sebastian Risi,et al.  Visualization and Clustering of Tagged Music Data , 2007, GfKl.

[24]  Bamshad Mobasher,et al.  Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering , 2008, DaWaK.

[25]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[26]  Alireza Noruzi,et al.  Folksonomies : (Un) controlled vocabulary? , 2006 .

[27]  Hongyan Liu,et al.  TagClus: a random walk-based method for tag clustering , 2010, Knowledge and Information Systems.

[28]  Edwin Simpson,et al.  Clustering Tags in Enterprise and Web Folksonomies , 2021, ICWSM.

[29]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[30]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[31]  Mor Naaman,et al.  Why do tagging systems work? , 2006, CHI Extended Abstracts.

[32]  Grigory Begelman,et al.  Automated Tag Clustering: Improving search and exploration in the tag space , 2006 .

[33]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[34]  Flavius Frasincar,et al.  A semantic clustering-based approach for searching and browsing tag spaces , 2011, SAC.

[35]  Vittorio Loreto,et al.  Folksonomies, the semantic web, and movie recommendation , 2007 .

[36]  Frederico Araújo Durão,et al.  A cooperative classification mechanism for search and retrieval software components , 2007, SAC '07.