Robust Detection of Anomalies via Sparse Methods

The problem of anomaly detection is a critical topic across application domains and is the subject of extensive research. Applications include finding frauds and intrusions, warning on robot safety, and many others. Standard approaches in this field exploit simple or complex system models, created by experts using detailed domain knowledge.

[1]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[4]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[5]  T.Y. Lin,et al.  Anomaly detection , 1994, Proceedings New Security Paradigms Workshop.

[6]  Jean-Philippe Vert,et al.  The group fused Lasso for multiple change-point detection , 2011, 1106.4199.

[7]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[8]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[9]  Chao Lan,et al.  Anomaly Detection , 2018, Encyclopedia of GIS.

[10]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.