Robust Ordinal Regression

Within disaggregation–aggregation approach, ordinal regressionaims at inducing parameters of a preference model, for example, parameters of a value function, which represent some holistic preference comparisons of alternatives given by the Decision Maker (DM). Usually, from among many sets of parameters of a preference model representing the preference information given by the DM, only one specific set is selected and used to work out a recommendation. For example, while there exist many value functions representing the holistic preference information given by the DM, only one value function is typically used to recommend the best choice, sorting, or ranking of alternatives. Since the selection of one from among many sets of parameters compatible with the preference information given by the DM is rather arbitrary, robust ordinal regressionproposes taking into account all the sets of parameters compatible with the preference information, in order to give a recommendation in terms of necessary and possible consequences of applying all the compatible preference models on the considered set of alternatives. In this chapter, we present the basic principle of robust ordinal regression, and the main multiple criteria decision methods to which it has been applied. In particular, UTA GMS and GRIPmethods are described, dealing with choice and ranking problems, then UTADIS GMS , dealing with sorting (ordinal classification) problems. Next, we present robust ordinal regression applied to Choquet integral for choice, sorting, and ranking problems, with the aim of representing interactions between criteria. This is followed by a characterization of robust ordinal regression applied to outranking methods and to multiple criteria group decisions. Finally, we describe an interactive multiobjective optimization methodology based on robust ordinal regression, and an evolutionary multiobjective optimization method, called NEMO, which is also using the principle of robust ordinal regression.

[1]  G. Choquet Theory of capacities , 1954 .

[2]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[3]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[4]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .

[5]  Dov Pekelman,et al.  Mathematical Programming Models for the Determination of Attribute Weights , 1974 .

[6]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[7]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[8]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[9]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[11]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[12]  Martin Weber A Method of Multiattribute Decision Making with Incomplete Information , 1985 .

[13]  R. Słowiński,et al.  Molp with an interactive assessment of a piecewise linear utility function , 1987 .

[14]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[15]  L. Shapley A Value for n-person Games , 1988 .

[16]  Peter P. Wakker,et al.  Additive Representations of Preferences , 1989 .

[17]  J. Siskos,et al.  A DSS oriented method for multiobjective linear programming problems , 1989, Decis. Support Syst..

[18]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[19]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[20]  C. B. E. Costa,et al.  MACBETH — An Interactive Path Towards the Construction of Cardinal Value Functions , 1994 .

[21]  Jean-Marc Martel,et al.  ELECCALC - an interactive software for modelling the decision maker's preferences , 1994, Decis. Support Syst..

[22]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[23]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[24]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[25]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[26]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[27]  Vincent Mousseau,et al.  Inferring an ELECTRE TRI Model from Assignment Examples , 1998, J. Glob. Optim..

[28]  Roman Słowiński,et al.  The Use of Rough Sets and Fuzzy Sets in MCDM , 1999 .

[29]  Soung Hie Kim,et al.  Interactive group decision making procedure under incomplete information , 1999, Eur. J. Oper. Res..

[30]  Vincent Mousseau,et al.  A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support , 2000, Comput. Oper. Res..

[31]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[32]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[33]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[34]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[35]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[36]  S. Greco,et al.  Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle , 2002 .

[37]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[38]  Luis C. Dias,et al.  Valued outranking relations in ELECTRE providing manageable disaggregation procedures , 2004, Eur. J. Oper. Res..

[39]  Salvatore Greco,et al.  Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..

[40]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[41]  Salvatore Greco,et al.  Rough Set Based Decision Support , 2005 .

[42]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[43]  B. Roy Paradigms and Challenges , 2005 .

[44]  M. Grabisch,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[45]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[46]  James S. Dyer,et al.  Maut — Multiattribute Utility Theory , 2005 .

[47]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[48]  Carlos A. Bana e Costa,et al.  On the Mathematical Foundation of MACBETH , 2005 .

[49]  S. Greco,et al.  Decision Rule Approach , 2005 .

[50]  Christophe Labreuche,et al.  Bi-capacities -- Part II: the Choquet integral , 2007, ArXiv.

[51]  José Rui Figueira,et al.  Interactive Multiobjective Optimization Using a Set of Additive Value Functions , 2008, Multiobjective Optimization.

[52]  Jürgen Branke,et al.  Interactive Multiobjective Optimization from a Learning Perspective , 2008, Multiobjective Optimization.

[53]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[54]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[55]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[56]  Christophe Gonzales,et al.  Multiattribute Utility Theory , 2010, Decision-making Process.

[57]  Murat Köksalan,et al.  An interactive sorting method for additive utility functions , 2009, Comput. Oper. Res..

[58]  Jürgen Branke,et al.  Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression , 2009, EMO.

[59]  Bernard Roy,et al.  À propos de la signification des dépendances entre critères : quelle place et quels modes de prise en compte pour l'aide à la décision ? , 2009, RAIRO Oper. Res..

[60]  Salvatore Greco,et al.  The Possible and the Necessary for Multiple Criteria Group Decision , 2009, ADT.

[61]  Salvatore Greco,et al.  Non-additive Robust Ordinal Regression with Choquet integral, Bipolar and Level Dependent Choquet integrals , 2009, IFSA/EUSFLAT Conf..

[62]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[63]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[64]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[65]  Salvatore Greco,et al.  The Most Representative Utility Function for Non-Additive Robust Ordinal Regression , 2010, IPMU.

[66]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[67]  Salvatore Greco,et al.  Dominance-based Rough Set Approach to decision under uncertainty and time preference , 2010, Ann. Oper. Res..

[68]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[69]  Salvatore Greco,et al.  Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..

[70]  Risto Lahdelma,et al.  Stochastic Multicriteria Acceptability Analysis (SMAA) , 2010, Trends in Multiple Criteria Decision Analysis.

[71]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[72]  Salvatore Greco,et al.  The Choquet integral with respect to a level dependent capacity , 2011, Fuzzy Sets Syst..

[73]  S. Greco,et al.  Multicriteria customer satisfaction analysis with interacting criteria , 2011 .

[74]  Milosz Kadzinski,et al.  ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..

[75]  Salvatore Greco,et al.  Robust ordinal regression for multiple criteria group decision: UTA GMS -GROUP and , 2012 .

[76]  Milosz Kadzinski,et al.  Interactive Robust Cone Contraction Method for Multiple Objective Optimization Problems , 2012, Int. J. Inf. Technol. Decis. Mak..

[77]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[78]  S. Greco,et al.  Extreme ranking analysis in robust ordinal regression , 2012 .

[79]  S. Greco,et al.  Rough set and rule-based multicriteria decision aiding , 2012 .

[80]  Milosz Kadzinski,et al.  Selection of a representative set of parameters for robust ordinal regression outranking methods , 2012, Comput. Oper. Res..

[81]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..