暂无分享,去创建一个
[1] Optimal Hoeffding bounds for discrete reversible Markov chains , 2004, math/0405296.
[2] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[3] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[4] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[5] Daniel M. Kane,et al. A polynomial restriction lemma with applications , 2017, STOC.
[6] Zoltán Füredi,et al. Solution of the Littlewood-Offord problem in high dimensions , 1988 .
[7] Van H. Vu. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .
[8] Terence Tao,et al. A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.
[9] Attila Sali. A sperner-type theorem , 1985 .
[10] Attila Sali. Stronger Form of an M-Part Sperner Theorem , 1983, Eur. J. Comb..
[11] P. Lezaud. Chernoff-type bound for finite Markov chains , 1998 .
[12] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[13] G. Jameson. A simple proof of Stirling's formula for the gamma function , 2015, The Mathematical Gazette.
[14] Terence Tao,et al. The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Füredi , 2010, Comb..
[15] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[16] Van Vu,et al. Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.
[17] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .