The Littlewood-Offord Problem for Markov Chains

The celebrated Littlewood-Offord problem asks for an upper bound on the probability that the random variable $\epsilon_1 v_1 + \cdots + \epsilon_n v_n$ lies in the Euclidean unit ball, where $\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\}$ are independent Rademacher random variables and $v_1, \ldots, v_n \in \mathbb{R}^d$ are fixed vectors of at least unit length.We extend many known results to the case that the $\epsilon_i$ are obtained from a Markov chain, including the general bounds first shown by Erd\H{o}s in the scalar case and Kleitman in the vector case, and also under the restriction that the $v_i$ are distinct integers due to S\'ark\"ozy and Szemeredi. In all extensions, the upper bound includes an extra factor depending on the spectral gap. We also construct a pseudorandom generator for the Littlewood-Offord problem using similar techniques.

[1]  Optimal Hoeffding bounds for discrete reversible Markov chains , 2004, math/0405296.

[2]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[3]  D. Kleitman On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .

[4]  C. Esseen On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .

[5]  Daniel M. Kane,et al.  A polynomial restriction lemma with applications , 2017, STOC.

[6]  Zoltán Füredi,et al.  Solution of the Littlewood-Offord problem in high dimensions , 1988 .

[7]  Van H. Vu Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2009 .

[8]  Terence Tao,et al.  A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.

[9]  Attila Sali A sperner-type theorem , 1985 .

[10]  Attila Sali Stronger Form of an M-Part Sperner Theorem , 1983, Eur. J. Comb..

[11]  P. Lezaud Chernoff-type bound for finite Markov chains , 1998 .

[12]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[13]  G. Jameson A simple proof of Stirling's formula for the gamma function , 2015, The Mathematical Gazette.

[14]  Terence Tao,et al.  The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Füredi , 2010, Comb..

[15]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[16]  Van Vu,et al.  Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.

[17]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .