Absorbing boundary conditions for scalar waves in anisotropic media. Part 2: Time-dependent modeling

With the ultimate goal of devising effective absorbing boundary conditions (ABCs) for general anisotropic media, we investigate the well-posedness and accuracy aspects of local ABCs designed for the transient modeling of the scalar anisotropic wave equation. The ABC analyzed in this paper is the perfectly matched discrete layers (PMDL), a simple variant of perfectly matched layers (PML) that is also equivalent to rational approximation based ABCs. Specifically, we derive the necessary and sufficient condition for the well-posedness of the initial boundary value problem (IBVP) obtained by coupling an interior and a PMDL ABC. The derivation of the reflection coefficient presented in a companion paper (S. Savadatti, M.N. Guddati, J. Comput. Phys., 2010, doi:10.1016/j.jcp.2010.05.018) has shown that PMDL can correctly identify and accurately absorb outgoing waves with opposing signs of group and phase velocities provided the PMDL layer lengths satisfy a certain bound. Utilizing the well-posedness theory developed by Kreiss for general hyperbolic IBVPs, and the well-posedness conditions for ABCs derived by Trefethen and Halpern for isotropic acoustics, we show that this bound on layer lengths also ensures well-posedness. The time discretized form of PMDL is also shown to be theoretically stable and some instability related to finite precision arithmetic is discussed.

[1]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[2]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for Time-Harmonic Acoustics in the Presence of a Uniform Flow , 2006, SIAM J. Numer. Anal..

[3]  Weng Cho Chew,et al.  Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves , 1998 .

[4]  Jian-Ming Jin,et al.  Complex coordinate stretching as a generalized absorbing boundary condition , 1997 .

[5]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[6]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[7]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[8]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[9]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[10]  E. Lindman “Free-space” boundary conditions for the time dependent wave equation , 1975 .

[11]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[12]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[13]  Xiaobing Feng,et al.  Absorbing boundary conditions for electromagnetic wave propagation , 1999, Math. Comput..

[14]  Murthy N. Guddati,et al.  On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..

[15]  Dan Givoli,et al.  High-order Absorbing Boundary Conditions for anisotropic and convective wave equations , 2010, J. Comput. Phys..

[16]  Andreas C. Cangellaris,et al.  A Reflectionless Sponge Layer Absorbing Boundary Condition for the Solution of Maxwell's Equations with High-Order Staggered Finite Difference Schemes , 1998 .

[17]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[18]  J. Hesthaven,et al.  The Analysis and Construction of Perfectly Matched Layers for Linearized Euler Equations , 2022 .

[19]  D. Givoli Non-reflecting boundary conditions , 1991 .

[20]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[21]  G. Hermann,et al.  Nondispersive wave propagation in a layered composite , 1982 .

[22]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[23]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[24]  R. Higdon,et al.  Initial-boundary value problems for linear hyperbolic systems , 1986 .

[25]  Dan Givoli,et al.  High-order local absorbing conditions for the wave equation: Extensions and improvements , 2008, J. Comput. Phys..

[26]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[27]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[28]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[29]  Absorbing Boundary Conditions For Corner Regions , 2003 .

[30]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[31]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[32]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[33]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[34]  F. Magoulès Computational Methods for Acoustics Problems , 2007 .

[35]  Murthy N. Guddati,et al.  Padded continued fraction absorbing boundary conditions for dispersive waves , 2006 .

[36]  F. Hu,et al.  PML absorbing boundary conditions for the linearized and nonlinear Euler equations in the case of oblique mean flow , 2009 .

[37]  M. Leong,et al.  Application of green's theorem approach to symmetrical right‐angled H‐plane rectangular metallic waveguide bend , 1993 .

[38]  Thomas Hagstrom,et al.  A New Construction of Perfectly Matched Layers for Hyperbolic Systems with Applications to the Linearized Euler Equations , 2003 .

[39]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[40]  L. Trefethen Group velocity interpretation of the stability theory of Gustafsson, Kreiss, and Sundström , 1983 .

[41]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[42]  W. Mccrea,et al.  Boundary Conditions for the Wave Equation , 1933 .

[43]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[44]  Fang Q. Hu,et al.  A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow , 2005 .

[45]  Tim Warburton,et al.  Complete Radiation Boundary Conditions: Minimizing the Long Time Error Growth of Local Methods , 2009, SIAM J. Numer. Anal..

[46]  Murthy N. Guddati,et al.  Arbitrarily wide-angle wave equations for complex media , 2006 .

[47]  Murthy N. Guddati,et al.  Absorbing boundary conditions for scalar waves in anisotropic media. Part 1: Time harmonic modeling , 2010, J. Comput. Phys..

[48]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[49]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[50]  Thomas Hagstrom,et al.  New Results on Absorbing Layers and Radiation Boundary Conditions , 2003 .

[51]  L. Trefethen,et al.  Well-Posedness of one-way wave equations and absorbing boundary conditions , 1986 .

[52]  I. Cameron An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves , 1966 .

[53]  José M. Galán,et al.  Nonreflecting Boundary Conditions for the Nonlinear , 2005 .

[54]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .