Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells

Synaptotagmin-1, the canonical isoform of the synaptotagmin family, is a Ca2+ sensor for fast synchronous neurotransmitter release in forebrain neurons and chromaffin cells. Even though deletion of synaptotagmin-1 abolishes fast exocytosis in chromaffin cells, it reduces overall secretion by only 20% because of the persistence of slow exocytosis. Therefore, another Ca2+ sensor dominates release in these cells. Synaptotagmin-7 has a higher Ca2+ affinity and slower binding kinetics than synaptotagmin-1, matching the proposed properties for the second, slower Ca2+ sensor. Here, we examined Ca2+-triggered exocytosis in chromaffin cells from KO mice lacking synaptotagmin-7, and from knockin mice containing normal levels of a mutant synaptotagmin-7 whose C2B domain does not bind Ca2+. In both types of mutant chromaffin cells, Ca2+-triggered exocytosis was decreased dramatically. Moreover, in chromaffin cells lacking both synaptotagmin-1 and -7, only a very slow release component, accounting for ≈30% of WT exocytosis, persisted. These data establish synaptotagmin-7 as a major Ca2+ sensor for exocytosis in chromaffin cells, which, together with synaptotagmin-1, mediates almost all of the Ca2+ triggering of exocytosis in these cells, a surprising result, considering the lack of a role of synaptotagmin-7 in synaptic vesicle exocytosis.

[1]  T. Südhof,et al.  Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis , 2008, Proceedings of the National Academy of Sciences.

[2]  S. Theander,et al.  Synaptotagmin VII splice variants α, β, and δ are expressed in pancreatic β‐cells and regulate insulin exocytosis , 2008 .

[3]  G. Desir,et al.  Regulation of insulin secretion and GLUT4 trafficking by the calcium sensor synaptotagmin VII. , 2007, Biochemical and Biophysical Research Communications - BBRC.

[4]  W. Zhou,et al.  Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. , 2007, Biochemical and biophysical research communications.

[5]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[6]  T. Tsuboi,et al.  Synaptotagmin VII modulates the kinetics of dense‐core vesicle exocytosis in PC12 cells , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[7]  T. Martin,et al.  Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells , 2007, Journal of Cell Science.

[8]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[9]  T. Südhof,et al.  Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+‐triggered neurotransmitter release , 2006, The EMBO journal.

[10]  T. Südhof,et al.  Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation , 2006, The Journal of Neuroscience.

[11]  T. Südhof,et al.  Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release , 2005, Neuron.

[12]  Ping Wang,et al.  Synaptotagmin VII Is Targeted to Secretory Organelles in PC12 Cells, Where It Functions as a High-Affinity Calcium Sensor , 2005, Molecular and Cellular Biology.

[13]  E. Chapman,et al.  Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. , 2005, Molecular biology of the cell.

[14]  Thomas Voets,et al.  CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles , 2005, Neuron.

[15]  R. Llinás,et al.  Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Yamamoto,et al.  Synaptotagmin VII Is Targeted to Dense-core Vesicles and Regulates Their Ca2+-dependent Exocytosis in PC12 Cells* , 2004, Journal of Biological Chemistry.

[17]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[18]  George J. Augustine,et al.  Synaptotagmin I Synchronizes Transmitter Release in Mouse Hippocampal Neurons , 2004, The Journal of Neuroscience.

[19]  J. Jaiswal,et al.  Synaptotagmin VII Restricts Fusion Pore Expansion during Lysosomal Exocytosis , 2004, PLoS biology.

[20]  J. Bliska,et al.  A Process for Controlling Intracellular Bacterial Infections Induced by Membrane Injury , 2004, Science.

[21]  T. Südhof,et al.  N-Glycosylation Is Essential for Vesicular Targeting of Synaptotagmin 1 , 2004, Neuron.

[22]  T. Südhof,et al.  Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling , 2003, The EMBO journal.

[23]  T. Südhof,et al.  Examining Synaptotagmin 1 Function in Dense Core Vesicle Exocytosis under Direct Control of Ca2+ , 2003, The Journal of general physiology.

[24]  Richard A. Flavell,et al.  Impaired membrane resealing and autoimmune myositis in synaptotagmin VII–deficient mice , 2003, The Journal of cell biology.

[25]  E. Neher,et al.  Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23 , 2003, Cell.

[26]  T. Südhof,et al.  Sr2+ Binding to the Ca2+ Binding Site of the Synaptotagmin 1 C2B Domain Triggers Fast Exocytosis without Stimulating SNARE Interactions , 2003, Neuron.

[27]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[28]  Peng Chen,et al.  A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[30]  T. Südhof,et al.  Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities , 2002, The EMBO journal.

[31]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Südhof,et al.  Synaptotagmin VII as a Plasma Membrane Ca2+ Sensor in Exocytosis , 2001, Neuron.

[33]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[34]  T. Voets Dissection of Three Ca2+-Dependent Steps Leading to Secretion in Chromaffin Cells from Mouse Adrenal Slices , 2000, Neuron.

[35]  I. Martinez,et al.  Synaptotagmin VII Regulates Ca2+-Dependent Exocytosis of Lysosomes in Fibroblasts , 2000, The Journal of cell biology.

[36]  S. Seino,et al.  Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[38]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[39]  T. Südhof,et al.  Synaptotagmin II. A novel differentially distributed form of synaptotagmin. , 1991, The Journal of biological chemistry.