Perovskite Oxides as an Opportunity to Systematically Study the Electrooxidation of Alcohols and Polyols on Materials Based on Abundant Elements: Learning from the Experience Using Pure Metals and Metallic Oxides in Electrocatalysis

[1]  S. Haigh,et al.  Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation , 2022, ACS catalysis.

[2]  Yimin A. Wu,et al.  Activating Surface Lattice Oxygen of a Cu/Zn1-xCuxO Catalyst through Interface Interactions for CO Oxidation. , 2022, ACS applied materials & interfaces.

[3]  D. Morgan,et al.  Electronic Structure-Based Descriptors for Oxide Properties and Functions. , 2022, Accounts of chemical research.

[4]  W. Schuhmann,et al.  Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes , 2022, ACS Catalysis.

[5]  L. Mascaro,et al.  Glycerol electro-oxidation at Pt in alkaline media: influence of mass transport and cations , 2021, Electrochimica Acta.

[6]  B. Koel,et al.  Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. , 2021, Journal of the American Chemical Society.

[7]  Jonathan Hwang,et al.  Regulating oxygen activity of perovskites to promote NOx oxidation and reduction kinetics , 2021, Nature Catalysis.

[8]  J. Kibsgaard,et al.  Tracking oxygen atoms in electrochemical CO oxidation – Part I: Oxygen exchange via CO2 hydration , 2021 .

[9]  F. Calle‐Vallejo,et al.  Structure-sensitive scaling relations among carbon-containing species and their possible impact on CO2 electroreduction , 2021, Journal of Catalysis.

[10]  D. Harrington,et al.  Overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. , 2021, ChemSusChem.

[11]  N. Marković,et al.  Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. , 2021, Journal of the American Chemical Society.

[12]  J. Solla-Gullón,et al.  Highly active Ag/C nanoparticles containing ultra-low quantities of sub-surface Pt for the electrooxidation of glycerol in alkaline media , 2020, Applied Catalysis B: Environmental.

[13]  M. Risch,et al.  Seven steps to reliable cyclic voltammetry measurements for the determination of double layer capacitance , 2020, Journal of Physics: Energy.

[14]  J. L. Bott-Neto,et al.  Perovskite Oxides as Electrocatalyst for Glycerol Oxidation. , 2020, Journal of Electroanalytical Chemistry.

[15]  E. Herrero,et al.  Adsorbed Formate is the Last Common Intermediate in the Dual-Path Mechanism of the Electrooxidation of Formic Acid , 2020 .

[16]  Y. Y. Birdja,et al.  Electrooxidation of C4 Polyols on Platinum Single-Crystals: A Computational and Electrochemical Study , 2020, The Journal of Physical Chemistry C.

[17]  S. Tingry,et al.  Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production , 2020, Catalysis Science & Technology.

[18]  G. Huber,et al.  Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo2O4 Spinel Oxide Nanostructure Catalysts , 2020, ACS Catalysis.

[19]  H. Varela,et al.  Mechanistic aspects of the comparative oscillatory electrochemical oxidation of formic acid and methanol on platinum electrode , 2020, Journal of Solid State Electrochemistry.

[20]  M. Isaacs,et al.  Paired electrolysis for simultaneous generation of synthetic fuels and chemicals , 2020 .

[21]  E. Herrero,et al.  Monitoring of CO Binding Sites on Stepped Pt Single Crystal Electrodes in Alkaline Solutions by in situ FTIR Spectroscopy. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[22]  L. Dubois,et al.  Electrochemical Energy Conversion from Direct Oxidation of Glucose on Active Electrode Materials , 2019, Electrocatalysis.

[23]  E. Antolini Glycerol Electro-Oxidation in Alkaline Media and Alkaline Direct Glycerol Fuel Cells , 2019 .

[24]  Wilson A. Smith,et al.  In-situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO2: Theory, practice and challenges. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Jianlin Shi,et al.  Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions , 2019, Nature Communications.

[26]  Meng Zhou,et al.  Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions – A mini review , 2019, Applied Materials Today.

[27]  Shiming Zhou,et al.  Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation , 2019, Nature Communications.

[28]  Zongping Shao,et al.  Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor , 2019, Nature Communications.

[29]  J. Sempionatto,et al.  Electrocatalytic Oxidation of Glycerol on Platinum Single Crystals in Alkaline Media , 2019, ChemElectroChem.

[30]  Stanislaus S. Wong,et al.  Nanoscale Perovskites as Catalysts and Supports for Direct Methanol Fuel Cells. , 2019, Chemistry.

[31]  Xiaojing Yang,et al.  Sr, Fe Co-doped Perovskite Oxides With High Performance for Oxygen Evolution Reaction , 2019, Front. Chem..

[32]  Rafael A. Vicente,et al.  Bi-modified Pt Electrodes toward Glycerol Electrooxidation in Alkaline Solution: Effects on Activity and Selectivity , 2019, ACS Catalysis.

[33]  Futoshi Matsumoto,et al.  Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials , 2019, Inorganics.

[34]  D. Vlachos,et al.  Fundamentals of C–O bond activation on metal oxide catalysts , 2019, Nature Catalysis.

[35]  P. Ekins,et al.  The role of hydrogen and fuel cells in the global energy system , 2019, Energy & Environmental Science.

[36]  Li Song,et al.  eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics , 2019, Nature Communications.

[37]  Zhichuan J. Xu,et al.  Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells , 2019, Advanced materials.

[38]  A. Ezeta-Mejía,et al.  Carbon supported PdM (M = Fe, Co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors , 2019, International Journal of Hydrogen Energy.

[39]  Z. Tian,et al.  In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. , 2019, Analytical chemistry.

[40]  D. Morgan,et al.  Assessing Correlations of Perovskite Catalytic Performance with Electronic Structure Descriptors , 2019, Chemistry of Materials.

[41]  I. Dincer,et al.  A review on photoelectrochemical hydrogen production systems: Challenges and future directions , 2019, International Journal of Hydrogen Energy.

[42]  Chenghui Zhang,et al.  Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers , 2018, Nature Communications.

[43]  H. Fujii,et al.  Systematic Study of Descriptors for Oxygen Evolution Reaction Catalysis in Perovskite Oxides , 2018, The Journal of Physical Chemistry C.

[44]  G. Pacchioni,et al.  CO Oxidation Promoted by a Pt4/TiO2 Catalyst: Role of Lattice Oxygen at the Metal/Oxide Interface , 2018, Catalysis Letters.

[45]  M. Janik,et al.  Existence of an Electrochemically Inert CO Population on Cu Electrodes in Alkaline pH , 2018, ACS Catalysis.

[46]  Detlef Stolten,et al.  The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers , 2018, Electrochimica Acta.

[47]  J. Kohlbrecher,et al.  Combining SAXS and XAS To Study the Operando Degradation of Carbon-Supported Pt-Nanoparticle Fuel Cell Catalysts , 2018, ACS Catalysis.

[48]  A. Ludwig,et al.  The stability number as a metric for electrocatalyst stability benchmarking , 2018, Nature Catalysis.

[49]  Wei Li,et al.  Predicting the thermodynamic stability of perovskite oxides using machine learning models , 2018, Computational Materials Science.

[50]  M. Ebaid,et al.  Comparing nickel and cobalt perovskites for steam reforming of glycerol , 2018, Molecular Catalysis.

[51]  S. Joo,et al.  Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions , 2018, Science Advances.

[52]  H. Tüysüz,et al.  Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation , 2018, ACS Catalysis.

[53]  A. Gewirth,et al.  Origins of Less Noble Behavior by Au during CO Adsorption , 2018 .

[54]  S. Ntais,et al.  Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation , 2018 .

[55]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[56]  Jonathan Hwang,et al.  Perovskites in catalysis and electrocatalysis , 2017, Science.

[57]  S. Tingry,et al.  Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  F. Calle‐Vallejo,et al.  Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts , 2017 .

[59]  Joseph S. Elias,et al.  In Situ Spectroscopy and Mechanistic Insights into CO Oxidation on Transition-Metal-Substituted Ceria Nanoparticles , 2017 .

[60]  Y. Duan,et al.  First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La,Sr, B = Fe,Co) perovskites , 2017 .

[61]  F. Calle‐Vallejo,et al.  Quantitative Coordination–Activity Relations for the Design of Enhanced Pt Catalysts for CO Electro-oxidation , 2017 .

[62]  N. Marzari,et al.  Unraveling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide , 2017 .

[63]  M. Bevilacqua,et al.  Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols , 2017 .

[64]  J. Solla-Gullón,et al.  Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[65]  Y. Y. Birdja,et al.  The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide , 2017, Journal of the American Chemical Society.

[66]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[67]  Yang Shao-Horn,et al.  Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. , 2017, Nature chemistry.

[68]  C. A. Martins,et al.  Understanding the Influence of the Biomass-Derived Alcohols on the Activity and Stability of Pt Nanoparticles Supported on Graphene Nanoribbons , 2017, Electrocatalysis.

[69]  Tiefeng Wang,et al.  Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals , 2016 .

[70]  Rong Chen,et al.  Direct formate fuel cells: A review , 2016 .

[71]  William G. Hardin,et al.  Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation , 2016 .

[72]  S. Baranton,et al.  Electrochemical conversion of alcohols for hydrogen production: a short overview , 2016 .

[73]  Y. Y. Birdja,et al.  Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol , 2016 .

[74]  H. Varela,et al.  Oscillatory Electro-oxidation of Methanol on Platinum Single Crystal Electrodes , 2016, Electrocatalysis.

[75]  Kimberly M. Papadantonakis,et al.  Principles and implementations of electrolysis systems for water splitting , 2016 .

[76]  J. Feliu,et al.  Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt Surfaces Probed by CO Electro-oxidation , 2016 .

[77]  R. Behm,et al.  Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study , 2016 .

[78]  Clément Comminges,et al.  IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting , 2016 .

[79]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[80]  S. Dai,et al.  Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis , 2015 .

[81]  P. Tsiakaras,et al.  Electrocatalysts for Glucose Electrooxidation Reaction: A Review , 2015, Topics in Catalysis.

[82]  J. Feliu,et al.  Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt Surfaces in Acidic Medium , 2015 .

[83]  C. A. Martins,et al.  Establishing a Link between Well-Ordered Pt(100) Surfaces and Real Systems: How Do Random Superficial Defects Influence the Electro-oxidation of Glycerol? , 2015 .

[84]  T. Napporn,et al.  Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C , 2015, Electrocatalysis.

[85]  G. Tremiliosi‐Filho,et al.  Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: Temperature influence and reaction mechanism , 2015 .

[86]  Ryan O'Hayre,et al.  A review on direct methanol fuel cells–In the perspective of energy and sustainability , 2015 .

[87]  M. Chi,et al.  Role of LiCoO2 Surface Terminations in Oxygen Reduction and Evolution Kinetics. , 2015, The journal of physical chemistry letters.

[88]  C. A. Martins,et al.  Evidence for Independent Glycerol Electrooxidation Behavior on Different Ordered Domains of Polycrystalline Platinum , 2015 .

[89]  John T. S. Irvine,et al.  Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. , 2015, Nature materials.

[90]  F. Calle‐Vallejo,et al.  Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides , 2015 .

[91]  Joseph S. Elias,et al.  Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles. , 2014, Journal of the American Chemical Society.

[92]  Matthew M. Montemore,et al.  Scaling relations between adsorption energies for computational screening and design of catalysts , 2014 .

[93]  Daniel Duprez,et al.  Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. , 2014, Chemical reviews.

[94]  Junjie Gu,et al.  An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells , 2014 .

[95]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[96]  M. Eiswirth,et al.  Complex electrooxidation of formic acid on palladium , 2014 .

[97]  C. A. Martins,et al.  Ethanol vs. glycerol: Understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles , 2014 .

[98]  Junming Sun,et al.  Recent Advances in Catalytic Conversion of Ethanol to Chemicals , 2014 .

[99]  J. Solla-Gullón,et al.  On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium , 2014 .

[100]  R. Sheldon Green and sustainable manufacture of chemicals from biomass: state of the art , 2014 .

[101]  C. A. Martins,et al.  Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways , 2013 .

[102]  S. Badwal,et al.  Review of Electrochemical Ammonia Production Technologies and Materials , 2013 .

[103]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[104]  T. Napporn,et al.  Glycerol oxidation on nickel based nanocatalysts in alkaline medium - Identification of the reaction products , 2013 .

[105]  C. A. Martins,et al.  Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects , 2013 .

[106]  A. Grimaud,et al.  Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS , 2013 .

[107]  E. Herrero,et al.  Site Selectivity for CO Adsorption and Stripping on Stepped and Kinked Platinum Surfaces in Alkaline Medium , 2013 .

[108]  F. Forouzandeh,et al.  Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode , 2012 .

[109]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[110]  P. S. Castro,et al.  SECM Studies on the Electrocatalytic Oxidation of Glycerol at Copper Electrodes in Alkaline Medium , 2012 .

[111]  Atsushi Takagaki,et al.  Catalytic Transformations of Biomass-Derived Materials into Value-Added Chemicals , 2012, Catalysis Surveys from Asia.

[112]  Sang-Eun Bae,et al.  Bifunctional anode catalysts for direct methanol fuel cells , 2012 .

[113]  J. Sieben,et al.  Methanol, ethanol and ethylene glycol electro-oxidation at Pt and Pt–Ru catalysts electrodeposited over oxidized carbon nanotubes , 2012 .

[114]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[115]  Jens K. Nørskov,et al.  Optimizing Perovskites for the Water-Splitting Reaction , 2011, Science.

[116]  Yu Lin,et al.  The effect of Pd content in LaMnO3 for methanol partial oxidation , 2011 .

[117]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[118]  B. Liu,et al.  Decomposition Pathways of Glycerol via C–H, O–H, and C–C Bond Scission on Pt(111): A Density Functional Theory Study , 2011 .

[119]  Marc T. M. Koper,et al.  Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis , 2011 .

[120]  M. Koper,et al.  Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes , 2011 .

[121]  J Rossmeisl,et al.  On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. , 2011, The Journal of chemical physics.

[122]  K. Kontturi,et al.  Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC , 2011 .

[123]  Stanley C. S. Lai,et al.  Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? , 2011, Journal of the American Chemical Society.

[124]  G. Tremiliosi‐Filho,et al.  On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces , 2011 .

[125]  G. Tremiliosi‐Filho,et al.  Spectroscopic Studies of the Glycerol Electro-Oxidation on Polycrystalline Au and Pt Surfaces in Acidic and Alkaline Media , 2011 .

[126]  D. Duprez,et al.  Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides , 2011 .

[127]  P. Rodríguez,et al.  Self-promotion mechanism for CO electrooxidation on gold. , 2010, Physical chemistry chemical physics : PCCP.

[128]  M. Koper,et al.  Combining voltammetry with HPLC: application to electro-oxidation of glycerol. , 2010, Analytical chemistry.

[129]  C. H. Kim,et al.  Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust , 2010, Science.

[130]  Stanley C. S. Lai,et al.  The Influence of Surface Structure on Selectivity in the Ethanol Electro-oxidation Reaction on Platinum , 2010 .

[131]  J. Nørskov,et al.  Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals , 2010 .

[132]  Stanley C. S. Lai,et al.  Ethanol electro-oxidation on platinum in alkaline media. , 2009, Physical chemistry chemical physics : PCCP.

[133]  M. Mavrikakis,et al.  Structure sensitivity of methanol electrooxidation on transition metals. , 2009, Journal of the American Chemical Society.

[134]  Claudio Bianchini,et al.  Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. , 2009, Chemical reviews.

[135]  P. Rodríguez,et al.  Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media , 2009 .

[136]  D. J. Mowbray,et al.  Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces , 2009 .

[137]  J. Nørskov,et al.  Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. , 2009, Journal of the American Chemical Society.

[138]  Ashutosh Kumar Singh,et al.  Oxidation of methanol on perovskite-type La2-xSrxNiO4 (0 ≤ x ≤ 1) film electrodes modified by dispersed nickel in 1 M KOH , 2008 .

[139]  Manos Mavrikakis,et al.  Reactivity descriptors for direct methanol fuel cell anode catalysts , 2008 .

[140]  R. Gross,et al.  Chemicals from Biomass , 2007, Science.

[141]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[142]  A. Mukasyan,et al.  Perovskite-Based Catalysts for Direct Ethanol Fuel Cells , 2007, ECS Transactions.

[143]  A. Cuesta,et al.  At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. , 2006, Journal of the American Chemical Society.

[144]  A. Varma,et al.  High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells , 2006 .

[145]  D. Duprez,et al.  Oxygen storage capacity of La1−xA′xBO3 perovskites (with A′ = Sr, Ce; B = Co, Mn)—relation with catalytic activity in the CH4 oxidation reaction , 2005 .

[146]  M. Koper,et al.  CO oxidation on stepped Rh[n(111)x(111)] single crystal electrodes: Anion effects on CO surface mobility , 2005 .

[147]  T. Iwasita,et al.  Parallel pathways of ethanol oxidation: The effect of ethanol concentration , 2005 .

[148]  Liang-Yueh Ou Yang,et al.  In-situ scanning tunneling microscopy of carbon monoxide adsorbed on Au(111) electrode. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[149]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[150]  A. Russell,et al.  X-ray absorption spectroscopy of low temperature fuel cell catalysts. , 2004, Chemical reviews.

[151]  Xue-qing Gong,et al.  A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. , 2004, Journal of the American Chemical Society.

[152]  J. Feliu,et al.  Role of Crystalline Defects in Electrocatalysis: Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes , 2002 .

[153]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[154]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[155]  Gordon M. Crippen,et al.  Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..

[156]  Paj Peter Hilbers,et al.  Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum , 1998 .

[157]  G. Orozco,et al.  Adsorption and Electrooxidation of Carbon Monoxide on Silver , 1998 .

[158]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[159]  T. Iwasita,et al.  A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum , 1994 .

[160]  A. Sammells,et al.  Perovskite Anode Electrocatalysis for Direct Methanol Fuel Cells , 1993 .

[161]  D. Scherson,et al.  In situ potential difference Fourier transform infrared reflection absorption spectroscopic studies of the electrochemical oxidation of adsorbed carbon monoxide on nickel in alkaline solutions , 1993 .

[162]  J. P. Remeika,et al.  DEFECT CHEMISTRY AND CATALYSIS IN OXIDATION AND REDUCTION OVER PEROVSKITE‐TYPE OXIDES , 1976 .

[163]  P. Fernandes,et al.  Ethylene Glycol Electro-Oxidation on Platinum-Free Surfaces: How the Composition of PdRuRh Surfaces Influences the Catalysis , 2016 .

[164]  S. Bagheri,et al.  Catalytic conversion of biodiesel derived raw glycerol to value added products , 2015 .

[165]  M. Gaberšček,et al.  Enhanced oxygen reduction and methanol oxidation reaction activities of partially ordered PtCu nanoparticles , 2012 .

[166]  R. Wu,et al.  Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces , 2011 .

[167]  Ravindra Singh,et al.  Perovskite-type La2−xSrxNiO4 (0 ≤ x ≤ 1) as active anode materials for methanol oxidation in alkaline solutions , 2008 .

[168]  R. A. Santen,et al.  Periodic Density Functional Study of CO and OH Adsorption on Pt−Ru Alloy Surfaces: Implications for CO Tolerant Fuel Cell Catalysts , 2002 .

[169]  J. Tascón,et al.  Chemisorption and catalysis on LaMO3 oxides , 1985 .

[170]  Nicholas W. Hurst,et al.  Temperature Programmed Reduction , 1982 .

[171]  T. Matsushima Kinetic studies on the CO oxidation over platinum by means of carbon 13 tracer , 1979 .

[172]  D. Dowden Crystal and Ligand Field Models of Solid Catalysts , 1972 .