Parallelization of particle filter algorithms

This paper presents the parallelization of the particle filter algorithm in a single target video tracking application. In this document we demonstrate the process by which we parallelized the particle filter algorithm, beginning with a MATLAB implementation. The final CUDA program provided approximately 71x speedup over the initial MATLAB implementation.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Scott T. Acton,et al.  Cardiac Motion Recovery via Active Trajectory Field Models , 2009, IEEE Transactions on Information Technology in Biomedicine.

[3]  Kevin Skadron,et al.  Experiences Accelerating MATLAB Systems Biology Applications , 2009 .

[4]  Kevin Skadron,et al.  Accelerating leukocyte tracking using CUDA: A case study in leveraging manycore coprocessors , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[5]  Alois Knoll,et al.  A GPU-accelerated particle filter with pixel-level likelihood , 2008, VMV.

[6]  Jorge Dias,et al.  Bayesian real-time perception algorithms on GPU , 2010, Journal of Real-Time Image Processing.

[7]  Kazuhiro Otsuka,et al.  Real-time Visual Tracker by Stream Processing , 2009, J. Signal Process. Syst..

[8]  Michael J. Quinn,et al.  Parallel programming in C with MPI and OpenMP , 2003 .

[9]  Barry Wilkinson,et al.  Parallel programming , 1998 .

[10]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[11]  Frank Eliassen,et al.  Scalable Independent Multi-level Distribution in Multimedia Content Analysis , 2002, IDMS/PROMS.

[12]  João Orvalho,et al.  Protocols and Systems for Interactive Distributed Multimedia , 2002, Lecture Notes in Computer Science.

[13]  Scott T. Acton,et al.  Target tracking using the snake particle filter , 2010, 2010 IEEE Southwest Symposium on Image Analysis & Interpretation (SSIAI).

[14]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .