Divergence-free Scott-Vogelius elements on curved domains

We construct and analyze an isoparametric finite element pair for the Stokes problem in two dimensions. The pair is defined by mapping the Scott-Vogelius finite element space via a Piola transform. The velocity space has the same degrees of freedom as the quadratic Lagrange finite element space, and therefore the proposed spaces reduce to the Scott-Vogelius pair in the interior of the domain. We prove that the resulting method converges with optimal order, is divergence--free, and is pressure robust. Numerical examples are provided which support the theoretical results.

[1]  GUIDO KANSCHAT,et al.  Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods , 2014, SIAM J. Numer. Anal..

[2]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[3]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[4]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[5]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[6]  Guosheng Fu,et al.  Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..

[7]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[8]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[9]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[10]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[11]  Hyeong-Ohk Bae,et al.  Finite element approximations for the Stokes equations on curved domains, and their errors , 2004, Appl. Math. Comput..

[12]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[13]  Vivette Girault,et al.  Continuity Properties of the Inf-Sup Constant for the Divergence , 2016, SIAM J. Math. Anal..

[14]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[15]  Ibrahima Dione,et al.  Penalty: finite element approximation of Stokes equations with slip boundary conditions , 2015, Numerische Mathematik.

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  D. Boffi,et al.  Mixed finite elements, compatibility conditions, and applications : lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July 1, 2006 , 2008 .

[19]  L. R. Scott Finite element techniques for curved boundaries , 1973 .

[20]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[21]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[22]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[23]  Tosio Kato,et al.  Extension and Representation of Divergence-free Vector Fields on Bounded Domains , 2000 .

[24]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[25]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .