Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance

Three low bandgap conjugated polymers, i.e., PDTPBT-C8, PDTPBT-C6 and PDTPBT-C5, which consist of alternating N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole and 2,1,3-benzothiadiazole units and carry 1-octylnonyl, 1-hexylheptyl and 1-pentylhexyl as side chains, respectively, were synthesized. These polymers show strong absorption in the wavelength range of 600–900 nm with enhanced absorption coefficient as the length of alkyl chain decreases. The film morphology of the polymers and 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-C-61 (PCBM) blends is also dependent on the alkyl chain length. As the length decreases, the film becomes more uniform and the domian size decreases from 400–900 nm for PDTPBT-C8 to ∼50 nm for PDTPBT-C5. Bulk heterojunction photovoltaic solar cells (PSCs) were fabricated based on the blend of the polymers and PCBM with a weight ratio of 1:3. The device performance is dramatically improved as the length of the side chain decreases, due to enhanced film absorption coefficient and improved film morphology. With the polymer PDTPBT-C5, which carries the shortest alkyl chain, power conversion efficiency (PCE) up to 2.80% has been achieved. This result indicates that optimizing the structure of the solublizing alkyl chain is also crucial for the design and synthesis of high performance PSC polymeric materials.

[1]  Xianyu Deng,et al.  Fluorene-based low band-gap copolymers for high performance photovoltaic devices , 2004 .

[2]  Etienne Goovaerts,et al.  Low Band Gap Donor-Acceptor Conjugated Polymers toward Organic Solar Cells Applications , 2007 .

[3]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[4]  E. W. Meijer,et al.  Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers , 2001 .

[5]  F. Zhang,et al.  Polymer Solar Cells Based on a Low‐Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm , 2005 .

[6]  Christoph J. Brabec,et al.  Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications , 2007 .

[7]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[8]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[9]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[10]  Zhan'ao Tan,et al.  Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. , 2006, Journal of the American Chemical Society.

[11]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d]pyrrole , 2008 .

[12]  Mm Martijn Wienk,et al.  Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells , 2006 .

[13]  Yong Cao,et al.  Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices , 2005 .

[14]  M. Leclerc,et al.  Synthesis of 2,7‐Carbazolenevinylene‐Based Copolymers and Characterization of Their Photovoltaic Properties , 2006 .

[15]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[16]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[17]  O. Inganäs,et al.  Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative , 2004 .

[18]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[19]  Christoph J. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .

[20]  Yongfang Li,et al.  Alternating copolymers of electron-rich arylamine and electron-deficient 2,1,3-benzothiadiazole: Synthesis, characterization and photovoltaic properties , 2007 .

[21]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[22]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[23]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[24]  Yang Yang,et al.  Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices , 2001 .

[25]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[26]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[27]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[28]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[29]  Bernard Kippelen,et al.  A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. , 2007, Journal of the American Chemical Society.

[30]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[31]  C. M. Li,et al.  Semiconductive Polymers Containing Dithieno[3,2-b:2',3'-d]pyrrole for Organic Thin-Film Transistors , 2008 .

[32]  David L Carroll,et al.  Meso-structure formation for enhanced organic photovoltaic cells. , 2005, Organic letters.

[33]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[34]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[35]  Xu-hui Zhu,et al.  An Extremely Narrow-Band-Gap Conjugated Polymer with Heterocyclic Backbone and its Use in Optoelectronic Devices , 2006 .

[36]  J. Reynolds,et al.  Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. , 2006, Journal of the American Chemical Society.

[37]  F. Krebs,et al.  Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole , 2007 .

[38]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[39]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[40]  C. Brabec,et al.  Low band-gap polymeric photovoltaic devices , 2001 .

[41]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[42]  F. Krebs,et al.  Bulk Heterojunctions Based on Native Polythiophene , 2008 .

[43]  F. Krebs,et al.  Low band gap poly-thienopyrazines for solar cells—Introducing the 11-thia-9,13-diaza-cyclopenta[b]triphenylenes , 2007 .

[44]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[45]  T. Verbiest,et al.  Influence of the Substituent and Polymerization Methodology on the Properties of Chiral Poly(dithieno[3,2-b:2‘,3‘-d]pyrrole)s , 2007 .

[46]  F. Krebs,et al.  Large-area photovoltaics based on low band gap copolymers of thiophene and benzothiadiazole or benzo-bis(thiadiazole) , 2007 .

[47]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[48]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[49]  Frederik C. Krebs,et al.  Out-door testing and long-term stability of plastic solar cells , 2006 .

[50]  Mats Andersson,et al.  Low‐Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near‐Infrared Polymer Solar Cells , 2006 .

[51]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[52]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[53]  Helmut Neugebauer,et al.  Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell , 2005 .

[54]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[55]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[56]  C. Brabec,et al.  New low band-gap alternating polyfluorene derivatives for photovoltaic cells , 2006 .

[57]  L. Dai,et al.  Photovoltaic-Active Dithienosilole-Containing Polymers , 2007 .

[58]  S. Ng,et al.  Selective functionalization of 2,2'-bithiophenes , 1991 .

[59]  Christoph J. Brabec,et al.  A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes , 2002 .

[60]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[61]  Frederik C. Krebs,et al.  Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis (thiadiazole) , 2006 .