Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells

Intensive studies on low‐temperature deposited electron transport materials have been performed to improve the efficiency of n‐i‐p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on VOC and facilitates the growth of high‐quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO2 prepared without hydrogen doping, the HTO‐based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room‐temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

[1]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[2]  B. Marí,et al.  Perovskite FA1-xMAxPbI3 for Solar Cells: Films Formation and Properties , 2016 .

[3]  M. Zeman,et al.  A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution , 2016 .

[4]  Neil C. Greenham,et al.  Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms , 2016 .

[5]  M. Grätzel,et al.  Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films , 2016, Advanced materials.

[6]  Mingkui Wang,et al.  Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells , 2016 .

[7]  Xiao-Fang Jiang,et al.  Improving Film Formation and Photovoltage of Highly Efficient Inverted‐Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers , 2016 .

[8]  T. Emrick,et al.  Understanding Interface Engineering for High‐Performance Fullerene/Perovskite Planar Heterojunction Solar Cells , 2016 .

[9]  K. Wong,et al.  A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar‐Heterojunction Solar Cells , 2015 .

[10]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[11]  Juan Bisquert,et al.  Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. , 2015, The journal of physical chemistry letters.

[12]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[13]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[14]  Junjie Si,et al.  Hot‐Electron Injection in a Sandwiched TiOx–Au–TiOx Structure for High‐Performance Planar Perovskite Solar Cells , 2015 .

[15]  Leeyih Wang,et al.  Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3 heterojunction interface with amino acid , 2015 .

[16]  H. Han,et al.  The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell , 2015 .

[17]  Zhengping Wang,et al.  Dependence of the saturable absorption of graphene upon excitation photon energy , 2015 .

[18]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[19]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[20]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[21]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[22]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[23]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[24]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[25]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[26]  Bert Conings,et al.  An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells , 2014 .

[27]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[28]  T. Ma,et al.  All-Solid Perovskite Solar Cells with HOCO-R-NH3+I– Anchor-Group Inserted between Porous Titania and Perovskite , 2014 .

[29]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[30]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[31]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[32]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[33]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[34]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[35]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[36]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[37]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[38]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[39]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[40]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[41]  A. Janotti,et al.  Hydrogen multicentre bonds. , 2007, Nature materials.

[42]  E. Mccafferty,et al.  Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method , 1998 .

[43]  T. Sham,et al.  X-ray photoelectron spectroscopy (XPS) studies of hydrogen reduced rutile (TiO2-x) surfaces , 1982 .