Modified Sensitivity Control of a Semi-Active Suspension System with MR-Damper for Ride Comfort Improvement

In this paper, a modified sensitivity control for the semi-active suspension system with a magneto-rheological (MR) damper is investigated. A 2-d.o.f quarter-car model together with a 6th order polynomial model for the MR damper is considered. For the purpose of suppressing the vertical acceleration of the sprung mass, the square of the vertical acceleration is defined as a cost function and a modified sensitivity control that updates the current input in the negative gradient of the cost function is proposed. The implementation of the proposed algorithm requires only the measurement of the relative displacement of the suspension deflection. The local stability of equilibria of the closed loop nonlinear system is proved by investigating the eigenvalues of the linearized ones. Through simulations, the passive suspension, the skyhook control, and the proposed modified sensitivity control are compared.