Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling

Abstract Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson–Nernst–Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

[1]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[2]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[3]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[4]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[5]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[6]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[7]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[8]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[9]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[10]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[11]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .

[12]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[13]  A. A. Moya,et al.  Ionic Transport in Electrochemical Cells Including Electrical Double-Layer Effects. A Network Thermodynamics Approach , 1995 .

[14]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[15]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[16]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[17]  Keld West,et al.  Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources , 1979 .

[18]  M. Verbrugge,et al.  Electrochemical analysis of lithiated graphite anodes , 2003 .

[19]  Moving Boundary Model for the Discharge of a LiCoO2 Electrode , 2007 .

[20]  Igor O. Golosnoy,et al.  Numerical solutions of diffusion-controlled moving boundary problems which conserve solute , 2005 .

[21]  A. A. Moya,et al.  Simulation and interpretation of electrochemical impedances using the network method , 1996 .

[22]  Wei Lai,et al.  Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF. , 2008, Physical chemistry chemical physics : PCCP.

[23]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[24]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[25]  K. Jagannathan,et al.  Approximate Solution Methods for Solid-State Diffusion in Phase-Change Electrodes , 2009 .

[26]  Ralph E. White,et al.  Thermodynamic model development for lithium intercalation electrodes , 2008 .

[27]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[28]  Juan Bisquert,et al.  Physical electrochemistry of nanostructured devices. , 2008, Physical chemistry chemical physics : PCCP.

[29]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  J. Dahn,et al.  Lithium Intercalation in Lixmo6se8 - a Model Mean-Field Lattice Gas , 1984 .

[31]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[32]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[33]  S. Pyun,et al.  Thermodynamic and kinetic approaches to lithium intercalation into a Li1−δMn2O4 electrode using Monte Carlo simulation , 2001 .

[34]  H. S. Carslow,et al.  Conduction of Heat in Solids, Second Edition , 1986 .

[35]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[36]  Perla B. Balbuena,et al.  A Lattice‐Gas Model Study of Lithium Intercalation in Graphite , 1999 .

[37]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[38]  R. Buck,et al.  Origins of finite transmission lines for exact representations of transport by the Nernst–Planck equations for each charge carrier , 1999 .

[39]  Juan Bisquert,et al.  Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes , 2002 .

[40]  C. Montella Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials. Part I. Influence of charge transfer kinetics and ohmic potential drop , 2002 .

[41]  Tsutomu Ohzuku,et al.  Phenomenological Expression of Solid‐State Redox Potentials of LiCoO2 , LiCo1 / 2Ni1 / 2 O 2, and LiNiO2 Insertion Electrodes , 1997 .

[42]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[43]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[44]  D. Aurbach,et al.  Frumkin intercalation isotherm — a tool for the description of lithium insertion into host materials: a review , 1999 .

[45]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[46]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[47]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[48]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[49]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[50]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[51]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[52]  M. Verbrugge,et al.  Electrochemistry of Intercalation Materials Charge‐Transfer Reaction and Intercalate Diffusion in Porous Electrodes , 1999 .

[53]  Dahn,et al.  Changes in the voltage profile of Li/Li1+xMn2-xO4 cells as a function of x. , 1996, Physical review. B, Condensed matter.

[54]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[55]  S. Pyun,et al.  Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode , 2003 .