Predicting 232U Content in Uranium

The minor isotope 232U may ultimately be used for detection or confirmation of uranium in a variety of applications. The primary advantage of 232 U as an indicator of the presence of enriched uranium is the plentiful and penetrating nature of the radiation emitted by its daughter radionuclide 208Tl. A possible drawback to measuring uranium via 232U is the relatively high uncertainty in 232U abundance both within and between material populations. An important step in assessing this problem is to ascertain what determines the 232U concentration within any particular sample of uranium. To this end, we here analyze the production and eventual enrichment of 232 U during fuel-cycle operations. The goal of this analysis is to allow approximate prediction of 232 U quantities, or at least some interpretation of the results of 232U measurements. We have found that 232U is produced via a number of pathways during reactor irradiation of uranium and is subsequently concentrated during the later enrichment of the uranium' s 235U Content. While exact calculations are nearly impossible for both the reactor-production and cascade-enrichment parts of the prediction problem, estimates and physical bounds can be provided as listed below and detailed within the body of the report. Even if precise calculations for the irradiation and enrichment were possible, the ultimate 212U concentration would still depend upon the detailed fuel-cycle history. Assuming that a thennal-diffusion cascade is used to produce highly enriched uranium (HEU), dilution of reactor-processed fuel at the cascade input and the long-term holdup of 232U within the cascade both affect the 232U concentration in the product. Similar issues could be expected to apply for the other isotope-separation technologies that are used in other countries. Results of this analysis are listed below: 0 The 232U concentration depends strongly on the uranium enrichment, with depleted uranium (DU) containing between 1600 and 8000 times less 232U than HEU does. * The 236U/232U concentration ratio in HEU is likely to be between 10{sup 6} and 2 x 10{sup 7}. 0 Plutonium-production reactors yield uranium with between I and 10 ppt of 232u. 0 Much higher 132U concentrations can be obtained in some situations. * Significant variation in the 232U concentration is inevitable. * Cascade enrichment increases the 232U concentration by a factor of at least 200, and possibly as much as 1000. 0 The actual 232U concentration depends upon the dilution at the cascade input.