Regular embeddings of Kn, n where n is an odd prime power

We show that if n=p^e where p is an odd prime and e>=1, then the complete bipartite graph K"n","n has p^e^-^1 regular embeddings in orientable surfaces. These maps, which are Cayley maps for cyclic and dihedral groups, have type {2n,n} and genus (n-1)(n-2)/2; one is reflexible, and the rest are chiral. The method involves groups which factorise as a product of two cyclic groups of order n. We deduce that if n is odd then K"n","n has at least n/@?"p"|"np orientable regular embeddings, and that this lower bound is attained if and only if no two primes p and q dividing n satisfy p=1mod(q).

[1]  Norman Blackburn Über das Produkt von zwei zyklischen 2-Gruppen , 1957 .

[2]  Stephen E. Wilson Operators over regular maps. , 1979 .

[3]  Gareth Jones,et al.  Elementary number theory , 2019, The Student Mathematical Library.

[4]  H. Wielandt,et al.  Über das Produkt paarweise vertauschbarer nilpotenter Gruppen , 1951 .

[5]  Gareth A. Jones,et al.  Regular orientable imbeddings of complete graphs , 1985, J. Comb. Theory B.

[6]  Martin Skoviera,et al.  Regular embeddings of complete bipartite graphs , 2002, Discret. Math..

[7]  B. Huppert Über das Produkt von paarweise vertauschbaren zyklischen Gruppen , 1953 .

[8]  Martin Skoviera,et al.  Regular Maps from Voltage Assignments and Exponent Groups , 1997, Eur. J. Comb..

[9]  Martin Skoviera,et al.  Complete bipartite graphs with a unique regular embedding , 2008, J. Comb. Theory, Ser. B.

[10]  Arthur T. White,et al.  Permutation Groups and Combinatorial Structures , 1979 .

[11]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[12]  N. Biggs Automorphisms of imbedded graphs , 1971 .

[13]  Gareth A. Jones,et al.  Automorphisms and regular embeddings of merged Johnson graphs , 2005, Eur. J. Comb..

[14]  B. Huppert Endliche Gruppen I , 1967 .

[15]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[16]  J Douglas ON THE SUPERSOLVABILITY OF BICYCLIC GROUPS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Roman Nedela,et al.  Exponents of orientable maps , 1997 .