Comparing Unscented and Extended Kalman Filter Algorithms in the Rigid-Body Point-Based Registration
暂无分享,去创建一个
[1] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[2] Xavier Pennec,et al. A Framework for Uncertainty and Validation of 3-D Registration Methods Based on Points and Frames , 2004, International Journal of Computer Vision.
[3] Berthold K. P. Horn,et al. Closed-form solution of absolute orientation using unit quaternions , 1987 .
[4] Jay B. West,et al. The distribution of target registration error in rigid-body point-based registration , 2001, IEEE Transactions on Medical Imaging.
[5] P. Schönemann,et al. A generalized solution of the orthogonal procrustes problem , 1966 .
[6] K. S. Arun,et al. Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Robert B. Fisher,et al. A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.
[8] Berthold K. P. Horn,et al. Closed-form solution of absolute orientation using orthonormal matrices , 1988 .
[9] Simon J. Julier,et al. The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[10] Richard A. Volz,et al. Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..
[11] Rudolph van der Merwe,et al. The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).
[12] Gene H. Golub,et al. Matrix computations , 1983 .