Highly efficient phosphate diester hydrolysis and DNA interaction by a new unsymmetrical FeIIINiII model complex

[1]  L. Ji,et al.  DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands. , 2002, Journal of inorganic biochemistry.

[2]  A. Bortoluzzi,et al.  New Fe(III)Zn(II) complex containing a single terminal Fe-O(phenolate) bond as a structural and functional model for the active site of red kidney bean purple acid phosphatase. , 2002, Inorganic chemistry.

[3]  A. Bortoluzzi,et al.  Synthesis, structure, properties, and phosphatase-like activity of the first heterodinuclear Fe(III)Mn(II) complex with the unsymmetric ligand H(2)BPBPMP as a model for the PAP in sweet potato. , 2002, Inorganic chemistry.

[4]  A. Bortoluzzi,et al.  Synthesis, structure and catalase-like activity of a new dinuclear mixed valence MnIIMnIII complex containing an unsymmetric N5O2 donor ligand , 2002 .

[5]  L. Que,et al.  Electro-nuclear double resonance spectroscopic evidence for a hydroxo-bridge nucleophile involved in catalysis by a dinuclear hydrolase. , 2002, Journal of the American Chemical Society.

[6]  G. Schenk,et al.  A Purple Acid Phosphatase from Sweet Potato Contains an Antiferromagnetically Coupled Binuclear Fe-Mn Center* 210 , 2001, The Journal of Biological Chemistry.

[7]  P. Cheng,et al.  The first iron(III)–nickel(II) heterodinuclear complex containing both terminal and bridged phosphato ligands relevant to structural core models for dimetalloenzymes , 2001 .

[8]  L. Guddat,et al.  Crystallization and preliminary X-ray diffraction data for a purple acid phosphatase from sweet potato. , 1999, Acta crystallographica. Section D, Biological crystallography.

[9]  I. Searle,et al.  Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. , 1999, Archives of biochemistry and biophysics.

[10]  E. Johansson,et al.  Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 A resolution with a mu-(hydr)oxo bridged di-iron center. , 1999, Journal of molecular biology.

[11]  D. Hume,et al.  Crystal structure of mammalian purple acid phosphatase. , 1999, Structure.

[12]  M. Merkx,et al.  Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclear Fe(III)-M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover. , 1999, Biochemistry.

[13]  G. Andersson,et al.  Crystal structure of a mammalian purple acid phosphatase. , 1999, Journal of molecular biology.

[14]  M. Merkx,et al.  Ga3+ as a functional substitute for Fe3+: preparation and characterization of the Ga3+Fe2+ and Ga3+Zn2+ forms of bovine spleen purple acid phosphatase. , 1998, Biochemistry.

[15]  A. Bousseksou,et al.  Synthesis, Structural, Magnetic, and Redox Properties of Asymmetric Diiron Complexes with a Single Terminally Bound Phenolate Ligand. Relevance to the Purple Acid Phosphatase Enzymes , 1997 .

[16]  M. Palaniandavar,et al.  Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA , 1997 .

[17]  T. Klabunde,et al.  The Dimetal Center in purple acid phosphatases , 1997 .

[18]  R. Fröhlich,et al.  Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. , 1996, Journal of molecular biology.

[19]  K. K. Nanda,et al.  Model Compounds for Iron Proteins. Structures and Magnetic, Spectroscopic, and Redox Properties of Fe(III)M(II) and [Co(III)Fe(III)](2)O Complexes with (&mgr;-Carboxylato)bis(&mgr;-phenoxo)dimetalate and (&mgr;-Oxo)diiron(III) Cores. , 1996, Inorganic chemistry.

[20]  W. Haase,et al.  A new asymmetric N5O2-donor binucleating ligand and its first FeIIFeIII complex as a model for the redox properties of uteroferrin , 1995 .

[21]  T. Holman,et al.  Structural and Spectroscopic Properties of Antiferromagnetically Coupled FeIIIMnII and FeIIMnII Complexes , 1995 .

[22]  J. Vincent,et al.  Proteins Containing Oxo-Bridged Dinuclear Iron Centers: A Bioinorganic Perspective , 1990 .

[23]  L. Que,et al.  Anion binding to uteroferrin. Evidence for phosphate coordination to the iron(III) ion of the dinuclear active site and interaction with the hydroxo bridge , 1990 .

[24]  T. Holman,et al.  Models for Iron-Oxo Proteins. MÖssbauer and EPR Study of an Antiferromagnetically Coupled FeIIINiII Complex , 1990 .

[25]  J. Jersey,et al.  Derivatives of the purple phosphatase from red kidney bean: Replacement of zinc with other divalent metal ions , 1988 .

[26]  M. Hendrich,et al.  Properties of the Fe(II)-Fe(III) derivative of red kidney bean purple phosphatase. Evidence for a binuclear zinc-iron center in the native enzyme , 1988 .

[27]  J. Beck,et al.  Enzymatically active zinc, copper and mercury derivatives of the one-iron form of pig allantoic fluid acid phosphatase. , 1984, Biochimica et biophysica acta.

[28]  J. C. Davis,et al.  Evidence for a spin-coupled binuclear iron unit at the active site of the purple acid phosphatase from beef spleen. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. de Jersey,et al.  Iron-containing acid phosphatases: characterization of the metal-ion binding site of the enzyme from pig allantoic fluid. , 1980, Biochemical and biophysical research communications.

[30]  C. A. Bunton,et al.  Hydrolysis of bis(2,4-dinitrophenyl) phosphate , 1969 .

[31]  A. J. Kirby,et al.  The Reactivity of Phosphate Esters. Monoester Hydrolysis , 1967 .