Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture.

[1]  S. Perotto,et al.  Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. , 2009, European journal of histochemistry : EJH.

[2]  G. Lamers,et al.  Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. , 2003, Molecular plant-microbe interactions : MPMI.

[3]  J. Jansson,et al.  Use of Bromodeoxyuridine Immunocapture To Identify Active Bacteria Associated with Arbuscular Mycorrhizal Hyphae , 2003, Applied and Environmental Microbiology.

[4]  S. Sørensen,et al.  The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum) , 2003 .

[5]  J. Jansson Marker and reporter genes: illuminating tools for environmental microbiologists. , 2003, Current opinion in microbiology.

[6]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[7]  T. Chin-A-Woeng,et al.  Phenazines and their role in biocontrol by Pseudomonas bacteria. , 2003, The New phytologist.

[8]  A. Fitter,et al.  Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem , 2002, Molecular ecology.

[9]  E. Bååth,et al.  Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. , 2002, FEMS microbiology ecology.

[10]  D. Dubois,et al.  Soil Fertility and Biodiversity in Organic Farming , 2002, Science.

[11]  F. L. Pfleger,et al.  Arbuscular mycorrhizal fungi respond to increasing plant diversity , 2002 .

[12]  David Johnson,et al.  In situ13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil , 2002 .

[13]  Daniel Schwarzott,et al.  A new fungal phylum, the Glomeromycota: phylogeny and evolution * * Dedicated to Manfred Kluge (Tech , 2001 .

[14]  M. Sakai,et al.  Application of T-RFLP analysis to the study of bacterial community structure in the rhizosphere , 2001 .

[15]  A. Hodge,et al.  An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material , 2001, Nature.

[16]  Å. Eriksson Arbuscular mycorrhiza in relation to management history, soil nutrients and plant species diversity , 2001, Plant Ecology.

[17]  A. Fitter,et al.  Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. , 2001, FEMS microbiology ecology.

[18]  R. Augé Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis , 2001, Mycorrhiza.

[19]  R. Gallo,et al.  Nitrogen Fixation Genes in an EndosymbioticBurkholderia Strain , 2001, Applied and Environmental Microbiology.

[20]  T. Chin-A-Woeng,et al.  Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. , 2000, Molecular plant-microbe interactions : MPMI.

[21]  L. Lanfranco,et al.  Detection and Identification of Bacterial Endosymbionts in Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae , 2000, Applied and Environmental Microbiology.

[22]  Zhang,et al.  Arbuscular‐mycorrhizal fungi: potential roles in weed management , 2000 .

[23]  C. Nakatsu,et al.  Soil Community Analysis Using DGGE of 16S rDNA Polymerase Chain Reaction Products , 2000 .

[24]  A. Khan,et al.  Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. , 2000, Chemosphere.

[25]  M. Norman,et al.  The utility of ergosterol as a bioindicator of fungi in temperate soils , 2000 .

[26]  D. Read,et al.  Symbiotic fungal associations in 'lower' land plants. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  T. Boller,et al.  Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation , 2000, Biology and Fertility of Soils.

[28]  J. Sørensen,et al.  Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide , 2000 .

[29]  Philip Ineson,et al.  Stable-isotope probing as a tool in microbial ecology , 2000, Nature.

[30]  D. van Tuinen,et al.  Isolation from the Sorghum bicolorMycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens , 1999, Applied and Environmental Microbiology.

[31]  S. Fontenla,et al.  Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus, Glomus mosseae. , 1999 .

[32]  James Borneman,et al.  Culture-Independent Identification of Microorganisms That Respond to Specified Stimuli , 1999, Applied and Environmental Microbiology.

[33]  L. Zelles,et al.  Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review , 1999, Biology and Fertility of Soils.

[34]  D. F. Jensen,et al.  Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley , 1999 .

[35]  O. Nybroe,et al.  Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil , 1999 .

[36]  M. St-Arnaud,et al.  Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms , 1999 .

[37]  J. Jansson,et al.  Simultaneous Monitoring of Cell Number and Metabolic Activity of Specific Bacterial Populations with a Dualgfp-luxAB Marker System , 1999, Applied and Environmental Microbiology.

[38]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[39]  P. Bakker,et al.  Biocontrol by Phenazine-1-carboxamide-Producing Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f. sp. radicis-lycopersici , 1998 .

[40]  B. Gerhardson,et al.  Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments , 1998, European Journal of Plant Pathology.

[41]  G. Bécard,et al.  Cytoplasmic autofluorescence of an arbuscular mycorrhizal fungus Gigaspora gigantea and nondestructive fungal observations in planta , 1998 .

[42]  R. Azcón,et al.  Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi , 1998, Biology and Fertility of Soils.

[43]  G. Bethlenfalvay,et al.  Soil aggregation status and rhizobacteria in the mycorrhizosphere , 1998, Plant and Soil.

[44]  D. F. Jensen,et al.  Selection of biological control agents for controlling soil and seed-borne diseases in the field , 1997, European Journal of Plant Pathology.

[45]  M. St-Arnaud,et al.  Inhibition of Fusarium oxysporum f-sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices , 1997 .

[46]  G. Bethlenfalvay,et al.  Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi , 1997, Plant and Soil.

[47]  M. R. Carter,et al.  A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture , 1997 .

[48]  J. Barea,et al.  Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved , 1997, Mycorrhiza.

[49]  Murray H. Miller,et al.  Mycorrhizae, Phosphorus Absorption, and Yield of Maize in Response to Tillage , 1996 .

[50]  C. Bandi,et al.  An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria , 1996, Applied and environmental microbiology.

[51]  S. Perotto,et al.  Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria , 1996, Protoplasma.

[52]  Murray H. Miller,et al.  Development of fungi below ground in association with plants growing in disturbed and undisturbed soils , 1996 .

[53]  Alastair H. Fitter,et al.  Arbuscular Mycorrhiza Protect an Annual Grass from Root Pathogenic Fungi in the Field , 1995 .

[54]  L. Carpenter-Boggs,et al.  Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes , 1995 .

[55]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[56]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation , 1995 .

[57]  J. Garbaye Tansley Review No. 76 Helper bacteria: a new dimension to the mycorrhizal symbiosis. , 1994, The New phytologist.

[58]  S. Gianinazzi,et al.  Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems , 1994, ALS Advances in Life Sciences.

[59]  C. Singh Mass inoculum production of vesicular-arbuscular (VA) mycorrhizae: II. Impact of N2-fixing and P-solubilizing bacterial inoculation on VA-mycorrhiza , 1992 .

[60]  M. Caron Potential use of mycorrhizae in control of soil-borne diseases , 1989 .

[61]  B. Hetrick,et al.  Suppression of mycorrhizal growth response of big bluestem by non-sterile soil , 1988 .

[62]  G. Bécard,et al.  Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. , 1988, The New phytologist.

[63]  D. Bagyaraj,et al.  Bacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas , 1987 .

[64]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[65]  Robert E Davis,et al.  STIMULATION OF GERMINATION OF SPORES OF GLOMUS VERSIFORME BY SPORE-ASSOCIATED BACTERIA , 1986 .

[66]  I. Tommerup Inhibition of spore germination of vesicular-arbuscular mycorrhizal fungi in soil , 1985 .

[67]  C. Reid,et al.  RHIZOSPHERE BACTERIAL POPULATION RESPONSES TO ROOT COLONIZATION BY A VESICULAR‐ARBUSCULAR MYCORRH1ZAL FUNGUS *† , 1984 .

[68]  W. A. Dick,et al.  Relationships Between Enzyme Activities and Microbial Growth and Activity Indices in Soil 1 , 1983 .

[69]  R. M. Macdonald,et al.  THE OCCURRENCE OF BACTERIUM‐LIKE ORGANELLES IN VESICULAR‐ARBUSCULAR MYCORRHIZAL FUNGI , 1982 .

[70]  J. Trappe,et al.  Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. , 1980 .

[71]  J. Tisdall,et al.  Stabilization of Soil Aggregates by the Root Systems of Ryegrass , 1979 .

[72]  J. Gerdemann,et al.  PHOSPHATE UPTAKE ZONES OF MYCORRHIZAL AND NON-MYCORRHIZAL ONIONS , 1975 .

[73]  B. Mosse The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza , 1959 .

[74]  P. Bakker,et al.  Suppression of fusarium wilt of radish by co-inoculation of fluorescentPseudomonas spp. and root-colonizing fungi , 2005, European Journal of Plant Pathology.

[75]  G. Bethlenfalvay,et al.  Mycorrhizal fungi influence plant and soil functions and interactions , 2004, Plant and Soil.

[76]  A. Ram,et al.  Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. , 2002, Molecular plant-microbe interactions : MPMI.

[77]  J. Barea,et al.  Mycorrhizal technology in agriculture: from genes to bioproducts. , 2002 .

[78]  M. Giovannetti,et al.  Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae , 1998 .

[79]  K. Mukerji,et al.  MICROBIAL INTERACTIONS IN MYCORRHIZOSPHERE OF ANETHUM GRAVEOLENS L. , 1998 .

[80]  T. Chin-A-Woeng,et al.  Description of the Colonization of a Gnotobiotic Tomato Rhizosphere by Pseudomonas fluorescens Biocontrol Strain WCS365, Using Scanning Electron Microscopy , 1997 .

[81]  S. Grayston,et al.  Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability , 1997 .

[82]  E. Dumas‐Gaudot,et al.  Gene Expression and Molecular Modifications Associated with Plant Responses to Infection by Arbuscular Mycorrhizal Fungi , 1994 .

[83]  R. Azcón,et al.  Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms , 1994 .

[84]  A. Osbourn,et al.  Advances in Molecular Genetics of Plant-Microbe Interactions , 1994, Current Plant Science and Biotechnology in Agriculture.

[85]  Julie Meyer,et al.  RESPONSE OF SUBTERRANEAN CLOVER TO DUAL INOCULATION WITH VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI AND A PLANT GROWTH-PROMOTING BACTERIUM, PSEUDOMONAS PUTIDA , 1986 .

[86]  Julie Meyer,et al.  Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum , 1986 .

[87]  T. Nicolson,et al.  Aggregation of sand from a maritime embryo sand dune by microorganisms and higher plants , 1981 .

[88]  J. P. Ross Effect of nontreated field soil on sporulation of vesicular-arbuscular mycorrhizal fungi associated with soybean. , 1980 .

[89]  A. Rambelli CHAPTER 8 – The Rhizosphere of Mycorrhizae , 1973 .

[90]  Thomas D. Brock,et al.  Biology of microorganisms , 1970 .

[91]  S. Lyles Biology of microorganisms , 1969 .