The Knotted Sky I: Planck constraints on the primordial power spectrum

Using the temperature data from Planck we search for departures from a power-law primordial power spectrum, employing Bayesian model-selection and posterior probabilities. We parametrize the spectrum with n knots located at arbitrary values of logk, with both linear and cubic splines. This formulation recovers both slow modulations and sharp transitions in the primordial spectrum. The power spectrum is well-fit by a featureless, power-law at wavenumbers k>10-3 Mpc-1. A modulated primordial spectrum yields a better fit relative to ΛCDM at large scales, but there is no strong evidence for a departure from a power-law spectrum. Moreover, using simulated maps we show that a local feature at k ∼ 10-3 Mpc-1 can mimic the suppression of large-scale power. With multi-knot spectra we see only small changes in the posterior distributions for the other free parameters in the standard ΛCDM universe. Lastly, we investigate whether the hemispherical power asymmetry is explained by independent features in the primordial power spectrum in each ecliptic hemisphere, but find no significant differences between them.

[1]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[2]  G. W. Pratt,et al.  Planck 2015 results. XVII. Constraints on primordial non-Gaussianity , 2015, 1502.01592.

[3]  Richard Easther,et al.  The Knotted Sky II: does BICEP2 require a nontrivial primordial power spectrum? , 2014, 1403.5922.

[4]  A. G. Vieregg,et al.  Bicep2. II. EXPERIMENT AND THREE-YEAR DATA SET , 2014, 1403.4302.

[5]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[6]  P. K. Rath,et al.  Relating the inhomogeneous power spectrum to the CMB hemispherical anisotropy , 2014, 1403.2567.

[7]  P. K. Rath,et al.  Relating the anisotropic power spectrum to the CMB hemispherical anisotropy , 2014 .

[8]  J. McDonald Hemispherical Power Asymmetry from a Space-Dependent Component of the Adiabatic Power Spectrum , 2014, 1403.2076.

[9]  Abhilash Mishra,et al.  Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.

[10]  Grigor Aslanyan,et al.  Cosmo++: An object-oriented C++ library for cosmology , 2013, Comput. Phys. Commun..

[11]  R. Trotta,et al.  The best inflationary models after Planck , 2013, 1312.3529.

[12]  G. Smoot,et al.  Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck , 2013, 1310.3038.

[13]  Xin Wang,et al.  Reconstructing primordial power spectrum using Planck and SDSS-III measurements , 2013, 1309.6624.

[14]  Richard Easther,et al.  Large scale anomalies in the microwave background: causation and correlation. , 2013, Physical review letters.

[15]  R. Flauger,et al.  Planck constraints on monodromy inflation , 2013, 1308.3736.

[16]  S. Flender,et al.  The small scale power asymmetry in the cosmic microwave background , 2013, 1307.6069.

[17]  M. Cortês,et al.  Cosmic microwave background anomalies in an open universe. , 2013, Physical review letters.

[18]  M. Kamionkowski,et al.  The Pesky Power Asymmetry , 2013, 1303.6949.

[19]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[20]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[21]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[22]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[23]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[24]  J. Aumont,et al.  Planck2018 results , 2013, Astronomy & Astrophysics.

[25]  T. Souradeep,et al.  Primordial power spectrum: a complete analysis with the WMAP nine-year data , 2013, 1303.4143.

[26]  J. Vázquez,et al.  Constraints on the Tensor-to-Scalar ratio for non-power-law models , 2013, 1303.4014.

[27]  H. Peiris,et al.  Constraining monodromy inflation , 2013, 1303.2616.

[28]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: cosmological parameters from three seasons of data , 2013, 1301.0824.

[29]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[30]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[31]  M. Bucher,et al.  Reconstructing the primordial power spectrum from the CMB , 2012, 1209.2147.

[32]  J. Vázquez,et al.  Model selection applied to reconstruction of the Primordial Power Spectrum , 2012, 1203.1252.

[33]  Richard Easther,et al.  Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating , 2011, 1112.0326.

[34]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[35]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[36]  J. Vázquez,et al.  A Bayesian study of the primordial power spectrum from a novel closed universe model , 2011, 1103.4619.

[37]  Jinn-Ouk Gong,et al.  Features of heavy physics in the CMB power spectrum , 2010, 1010.3693.

[38]  L. Verde,et al.  Minimally parametric power spectrum reconstruction from the Lyman α forest , 2010, 1010.1519.

[39]  R. Trotta,et al.  Hunting Down the Best Model of Inflation with Bayesian Evidence , 2010, 1009.4157.

[40]  Hiranya V. Peiris,et al.  The shape of the primordial power spectrum: A last stand before Planck data , 2009, 0912.0268.

[41]  C. Contaldi,et al.  Reconstruction of the primordial power spectrum by direct inversion , 2009, 0909.5092.

[42]  D. Baumann TASI Lectures on Inflation , 2009, 0907.5424.

[43]  Raphael Flauger,et al.  Oscillations in the CMB from axion monodromy inflation , 2009, 0907.2916.

[44]  Carlo R. Contaldi,et al.  Reconstruction of the primordial power spectrum using temperature and polarisation data from multiple experiments , 2009, 0903.1106.

[45]  A. Jaffe,et al.  OPTIMAL BINNING OF THE PRIMORDIAL POWER SPECTRUM , 2009, 0902.4399.

[46]  J. Yokoyama,et al.  Band-power reconstruction of the primordial fluctuation spectrum by the maximum likelihood reconstruction method , 2008, 0812.4585.

[47]  P. Lilje,et al.  POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC? , 2008, 0812.3795.

[48]  M. P. Hobson,et al.  Bayesian optimal reconstruction of the primordial power spectrum , 2008, 0812.3541.

[49]  A. Ashoorioon,et al.  Energy transfer in multi field inflation and cosmological perturbations , 2008, 0810.4660.

[50]  J. Yokoyama,et al.  Reconstruction of the primordial fluctuation spectrum from the five-year WMAP data by the cosmic inversion method with band-power decorrelation analysis , 2008, 0809.4537.

[51]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[52]  S. Carroll,et al.  A hemispherical power asymmetry from inflation , 2008, 0806.0377.

[53]  Hiranya V. Peiris,et al.  ournal of C osmology and A stroparticle hysics J On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt , 2022 .

[54]  T. Souradeep,et al.  Estimation of primordial spectrum with post-WMAP 3-year data , 2007, 0709.1944.

[55]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[56]  Tim B. Swartz,et al.  Bayesian Analysis of Dyadic Data , 2007 .

[57]  P. Manimaran,et al.  Features in the Primordial Spectrum from WMAP: A Wavelet Analysis , 2006, astro-ph/0611352.

[58]  A. Lasenby,et al.  WMAP 3-yr primordial power spectrum , 2006, astro-ph/0607404.

[59]  A. Ashoorioon,et al.  Power Spectrum and Signatures for Cascade Inflation , 2006, hep-th/0607001.

[60]  M. Hobson,et al.  A Bayesian analysis of the primordial power spectrum , 2005, astro-ph/0511573.

[61]  J. Silk,et al.  Non-parametric reconstruction of the primordial power spectrum at horizon scales from WMAP data , 2005, astro-ph/0509478.

[62]  S. Leach Measuring the primordial power spectrum: principal component analysis of the cosmic microwave background , 2005, astro-ph/0506390.

[63]  P. Lilje,et al.  Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .

[64]  T. Souradeep,et al.  Primordial power spectrum from WMAP , 2003, astro-ph/0312174.

[65]  S. Hannestad Reconstructing the primordial power spectrum—a new algorithm , 2003, astro-ph/0311491.

[66]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003, astro-ph/0307515.

[67]  P. Lilje,et al.  Asymmetries in the CMB anisotropy field , 2003, astro-ph/0307507.

[68]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[69]  S. Hannestad Reconstructing the inflationary power spectrum from cosmic microwave background radiation data , 2001 .

[70]  W. Kinney How to fool cosmic microwave background parameter estimation , 2001 .

[71]  S. Hannestad Reconstructing the inflationary power spectrum from CMBR data , 2000, astro-ph/0009296.

[72]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[73]  J. Berger,et al.  Interpreting the stars in precise hypothesis testing , 1991 .

[74]  K. Karlapalem,et al.  ET , 2013, Proceedings of the 22nd International Conference on World Wide Web - WWW '13 Companion.

[75]  J. Alberto Vázquez,et al.  Constraints on the tensor-to-scalar ratio for non-power-law models , 2013 .

[76]  Steen Hannestad Reconstructing the primordial power spectrum—a new algorithm , 2004 .

[77]  L. M. M.-T. Theory of Probability , 1929, Nature.