The Knotted Sky I: Planck constraints on the primordial power spectrum
暂无分享,去创建一个
Richard Easther | Layne C. Price | L. Price | R. Easther | K. Abazajian | Grigor Aslanyan | Kevork N. Abazajian | G. Aslanyan | Layne Price
[1] G. W. Pratt,et al. Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.
[2] G. W. Pratt,et al. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity , 2015, 1502.01592.
[3] Richard Easther,et al. The Knotted Sky II: does BICEP2 require a nontrivial primordial power spectrum? , 2014, 1403.5922.
[4] A. G. Vieregg,et al. Bicep2. II. EXPERIMENT AND THREE-YEAR DATA SET , 2014, 1403.4302.
[5] R. W. Ogburn,et al. Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.
[6] P. K. Rath,et al. Relating the inhomogeneous power spectrum to the CMB hemispherical anisotropy , 2014, 1403.2567.
[7] P. K. Rath,et al. Relating the anisotropic power spectrum to the CMB hemispherical anisotropy , 2014 .
[8] J. McDonald. Hemispherical Power Asymmetry from a Space-Dependent Component of the Adiabatic Power Spectrum , 2014, 1403.2076.
[9] Abhilash Mishra,et al. Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.
[10] Grigor Aslanyan,et al. Cosmo++: An object-oriented C++ library for cosmology , 2013, Comput. Phys. Commun..
[11] R. Trotta,et al. The best inflationary models after Planck , 2013, 1312.3529.
[12] G. Smoot,et al. Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck , 2013, 1310.3038.
[13] Xin Wang,et al. Reconstructing primordial power spectrum using Planck and SDSS-III measurements , 2013, 1309.6624.
[14] Richard Easther,et al. Large scale anomalies in the microwave background: causation and correlation. , 2013, Physical review letters.
[15] R. Flauger,et al. Planck constraints on monodromy inflation , 2013, 1308.3736.
[16] S. Flender,et al. The small scale power asymmetry in the cosmic microwave background , 2013, 1307.6069.
[17] M. Cortês,et al. Cosmic microwave background anomalies in an open universe. , 2013, Physical review letters.
[18] M. Kamionkowski,et al. The Pesky Power Asymmetry , 2013, 1303.6949.
[19] C. A. Oxborrow,et al. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.
[20] G. W. Pratt,et al. Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.
[21] G. W. Pratt,et al. Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .
[22] C. A. Oxborrow,et al. Planck 2015 results. I. Overview of products and scientific results , 2015 .
[23] G. W. Pratt,et al. Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.
[24] J. Aumont,et al. Planck2018 results , 2013, Astronomy & Astrophysics.
[25] T. Souradeep,et al. Primordial power spectrum: a complete analysis with the WMAP nine-year data , 2013, 1303.4143.
[26] J. Vázquez,et al. Constraints on the Tensor-to-Scalar ratio for non-power-law models , 2013, 1303.4014.
[27] H. Peiris,et al. Constraining monodromy inflation , 2013, 1303.2616.
[28] Peter A. R. Ade,et al. The Atacama Cosmology Telescope: cosmological parameters from three seasons of data , 2013, 1301.0824.
[29] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[30] M. Lueker,et al. A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.
[31] M. Bucher,et al. Reconstructing the primordial power spectrum from the CMB , 2012, 1209.2147.
[32] J. Vázquez,et al. Model selection applied to reconstruction of the Primordial Power Spectrum , 2012, 1203.1252.
[33] Richard Easther,et al. Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating , 2011, 1112.0326.
[34] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[35] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.
[36] J. Vázquez,et al. A Bayesian study of the primordial power spectrum from a novel closed universe model , 2011, 1103.4619.
[37] Jinn-Ouk Gong,et al. Features of heavy physics in the CMB power spectrum , 2010, 1010.3693.
[38] L. Verde,et al. Minimally parametric power spectrum reconstruction from the Lyman α forest , 2010, 1010.1519.
[39] R. Trotta,et al. Hunting Down the Best Model of Inflation with Bayesian Evidence , 2010, 1009.4157.
[40] Hiranya V. Peiris,et al. The shape of the primordial power spectrum: A last stand before Planck data , 2009, 0912.0268.
[41] C. Contaldi,et al. Reconstruction of the primordial power spectrum by direct inversion , 2009, 0909.5092.
[42] D. Baumann. TASI Lectures on Inflation , 2009, 0907.5424.
[43] Raphael Flauger,et al. Oscillations in the CMB from axion monodromy inflation , 2009, 0907.2916.
[44] Carlo R. Contaldi,et al. Reconstruction of the primordial power spectrum using temperature and polarisation data from multiple experiments , 2009, 0903.1106.
[45] A. Jaffe,et al. OPTIMAL BINNING OF THE PRIMORDIAL POWER SPECTRUM , 2009, 0902.4399.
[46] J. Yokoyama,et al. Band-power reconstruction of the primordial fluctuation spectrum by the maximum likelihood reconstruction method , 2008, 0812.4585.
[47] P. Lilje,et al. POWER ASYMMETRY IN COSMIC MICROWAVE BACKGROUND FLUCTUATIONS FROM FULL SKY TO SUB-DEGREE SCALES: IS THE UNIVERSE ISOTROPIC? , 2008, 0812.3795.
[48] M. P. Hobson,et al. Bayesian optimal reconstruction of the primordial power spectrum , 2008, 0812.3541.
[49] A. Ashoorioon,et al. Energy transfer in multi field inflation and cosmological perturbations , 2008, 0810.4660.
[50] J. Yokoyama,et al. Reconstruction of the primordial fluctuation spectrum from the five-year WMAP data by the cosmic inversion method with band-power decorrelation analysis , 2008, 0809.4537.
[51] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[52] S. Carroll,et al. A hemispherical power asymmetry from inflation , 2008, 0806.0377.
[53] Hiranya V. Peiris,et al. ournal of C osmology and A stroparticle hysics J On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt , 2022 .
[54] T. Souradeep,et al. Estimation of primordial spectrum with post-WMAP 3-year data , 2007, 0709.1944.
[55] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[56] Tim B. Swartz,et al. Bayesian Analysis of Dyadic Data , 2007 .
[57] P. Manimaran,et al. Features in the Primordial Spectrum from WMAP: A Wavelet Analysis , 2006, astro-ph/0611352.
[58] A. Lasenby,et al. WMAP 3-yr primordial power spectrum , 2006, astro-ph/0607404.
[59] A. Ashoorioon,et al. Power Spectrum and Signatures for Cascade Inflation , 2006, hep-th/0607001.
[60] M. Hobson,et al. A Bayesian analysis of the primordial power spectrum , 2005, astro-ph/0511573.
[61] J. Silk,et al. Non-parametric reconstruction of the primordial power spectrum at horizon scales from WMAP data , 2005, astro-ph/0509478.
[62] S. Leach. Measuring the primordial power spectrum: principal component analysis of the cosmic microwave background , 2005, astro-ph/0506390.
[63] P. Lilje,et al. Asymmetries in the Cosmic Microwave Background Anisotropy Field , 2004 .
[64] T. Souradeep,et al. Primordial power spectrum from WMAP , 2003, astro-ph/0312174.
[65] S. Hannestad. Reconstructing the primordial power spectrum—a new algorithm , 2003, astro-ph/0311491.
[66] G. Efstathiou. Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003, astro-ph/0307515.
[67] P. Lilje,et al. Asymmetries in the CMB anisotropy field , 2003, astro-ph/0307507.
[68] C. B. Netterfield,et al. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.
[69] S. Hannestad. Reconstructing the inflationary power spectrum from cosmic microwave background radiation data , 2001 .
[70] W. Kinney. How to fool cosmic microwave background parameter estimation , 2001 .
[71] S. Hannestad. Reconstructing the inflationary power spectrum from CMBR data , 2000, astro-ph/0009296.
[72] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[73] J. Berger,et al. Interpreting the stars in precise hypothesis testing , 1991 .
[74] K. Karlapalem,et al. ET , 2013, Proceedings of the 22nd International Conference on World Wide Web - WWW '13 Companion.
[75] J. Alberto Vázquez,et al. Constraints on the tensor-to-scalar ratio for non-power-law models , 2013 .
[76] Steen Hannestad. Reconstructing the primordial power spectrum—a new algorithm , 2004 .
[77] L. M. M.-T.. Theory of Probability , 1929, Nature.