Parametric Connectivity: Training of Constrained Networks using Genetic Algorithms

[1]  H. M. Hastings,et al.  Evolutionary Learning of Complex Modes of Information Processing , 1988, Advances in Cognitive Science.

[2]  Jaime Ramos,et al.  Alternate Realities: Mathematical Models of Nature and Man , 1990 .

[3]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[4]  Larry J. Eshelman,et al.  Using genetic search to exploit the emergent behavior of neural networks , 1990 .

[5]  W. Dress Electronic life and synthetic intelligent systems , 1990 .

[6]  Mike Rudnick,et al.  A bibliography of the intersection of genetic search and artificial neural networks , 1990 .

[7]  Tariq Samad,et al.  Towards the Genetic Synthesisof Neural Networks , 1989, ICGA.

[8]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[9]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[10]  Darrell Whitley,et al.  Applying genetic algorithms to neural network learning , 1989 .

[11]  G. Deon Oosthuizen,et al.  Machine Learning: A Mathematical Framework for Neural NetworkSymbolic and Genetics-Based Learning , 1989, ICGA.

[12]  L. Darrell Whitley,et al.  Optimizing Neural Networks Using FasterMore Accurate Genetic Search , 1989, ICGA.

[13]  Richard K. Belew,et al.  Back Propagation for the Classifier System , 1989, International Conference on Genetic Algorithms.

[14]  Lawrence Davis,et al.  Mapping Neural Networks into Classifier Systems , 1989, ICGA.

[15]  David H. Sharp,et al.  Scaling, machine learning, and genetic neural nets , 1989 .

[16]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[17]  Christopher G. Langton,et al.  Artificial Life: Proceedings Of An Interdisciplinary Workshop On The Synthesis And Simulation Of Living Systems , 1989 .

[18]  U. Ramacher,et al.  A geometrical approach to neural network design , 1989, International 1989 Joint Conference on Neural Networks.

[19]  M. Gutierrez,et al.  Estimating hidden unit number for two-layer perceptrons , 1989, International 1989 Joint Conference on Neural Networks.

[20]  Tariq Samad,et al.  Designing Application-Specific Neural Networks Using the Genetic Algorithm , 1989, NIPS.

[21]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.

[22]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[23]  Branko Soucek,et al.  Neural and massively parallel computers - the sixth generation , 1988 .

[24]  Harold M. Hastings,et al.  Advances In Cognitive Science: Steps Toward Convergence , 1988 .

[25]  T. J. A. Bennett,et al.  Self-organizing systems and transformational-generative (TG) grammar , 1988 .

[26]  S. Wegrzyn,et al.  On some models for developmental systems Part IX. Generalized generating word and genetic code , 1988 .

[27]  Rod Rinkus Learning as natural selection in a sensori-motor being , 1988, Neural Networks.

[28]  Russell Leighton,et al.  Shaping schedules as a method for accelerated learning , 1988, Neural Networks.

[29]  Michael C. Mozer,et al.  Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment , 1988, NIPS.

[30]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[31]  Aviv Bergman,et al.  BREEDING INTELLIGENT AUTOMATA. , 1987 .

[32]  M. Dyer,et al.  Toward the Evolution of Symbols , 1987, ICGA.

[33]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[34]  Geoffrey E. Hinton Learning Translation Invariant Recognition in Massively Parallel Networks , 1987, PARLE.

[35]  James D. Keeler,et al.  Basins of attraction of neural network models , 1987 .

[36]  Eric Mjolsness,et al.  A preliminary analysis of recursively generated networks , 1987 .

[37]  J. R. Knisley,et al.  A Darwinian approach to artificial neural systems , 1987 .

[38]  John Maynard Smith,et al.  When learning guides evolution , 1987, Nature.

[39]  Harold M. Hastings,et al.  Biologically motivated machine intelligence , 1988, SGAR.

[40]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[41]  A. J. Fenanzo,et al.  Darwinian evolution as a paradigm for AI research , 1986, SGAR.

[42]  Allen I. Selverston,et al.  Model Neural Networks and Behavior , 1985, Springer US.

[43]  Stewart W. Wilson Knowledge Growth in an Artificial Animal , 1985, ICGA.

[44]  H M Hastings,et al.  Principles of evolutionary learning design for a stochastic neural network. , 1985, Bio Systems.

[45]  A. M. Uttley The probability of neural connexions , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[46]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.