Magnetism and electronic structure calculation of SmN

The results of the electronic structure calculations performed on SmN by using the LDA+U method with and without including the spin–orbit coupling are presented. Within the LDA+U approach, a N(2p) band polarization of about 0.3 μB is induced by Sm(4f)-N(2p) hybridization, and a half-metallic ground state is obtained. By including spin–orbit coupling the magnetic structure was shown to be antiferromagnetic of type II, with Sm spin and orbital moments nearly cancelling. This results into a semiconducting ground state, which is in agreement with experimental results.

[1]  R. M. Wentzcovitch,et al.  Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu) , 2014, 1408.0863.

[2]  M. I. Katsnelson,et al.  Treatment of 4 f states of the rare earths : The case study of TbN , 2014, 1605.09538.

[3]  E. Anton,et al.  Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN , 2013, 1301.6829.

[4]  N. Plank,et al.  Rare-earth mononitrides , 2012, 1208.2410.

[5]  T. Björkman,et al.  Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications , 2011, 1110.2606.

[6]  Mebarek Alouani,et al.  Full-Potential Electronic Structure Method , 2010 .

[7]  H. Ebert,et al.  Correlation effects in the total energy, the bulk modulus, and the lattice constant of a transition metal: Combined local-density approximation and dynamical mean-field theory applied to Ni and Mn , 2008, 0809.4921.

[8]  W. Pickett,et al.  Anisotropy and Magnetism in the LSDA+U Method , 2008, 0808.1706.

[9]  A. Georges,et al.  Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals. , 2008, Physical Review Letters.

[10]  H. Trodahl,et al.  Near-zero-moment ferromagnetism in the semiconductor SmN , 2008, 0804.1595.

[11]  E. Tsymbal,et al.  Electronic, magnetic and transport properties of rare-earth monopnictides , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  H. Trodahl,et al.  Comparison between experiment and calculated band structures for DyN and SmN , 2007, cond-mat/0703740.

[13]  Walter R. L. Lambrecht,et al.  Electronic structure of rare-earth nitrides using the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry , 2007 .

[14]  P. Larson,et al.  Electronic structure of Gd pnictides calculated within the LSDA + U approach , 2006 .

[15]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[16]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[17]  V. Anisimov,et al.  Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds , 2005 .

[18]  K. Fauth,et al.  GdN thin films: Bulk and local electronic and magnetic properties , 2005 .

[19]  V. Drchal,et al.  Coulomb-U and magnetic-moment collapse in δ-Pu , 2005, cond-mat/0502233.

[20]  P. Strange,et al.  Electronic structure of samarium monopnictides and monochalcogenides , 2004, cond-mat/0407349.

[21]  G. M. Stocks,et al.  Electronic structure of half-metallic ferromagnets and spinel ferromagnetic insulators , 2004 .

[22]  P. Strange,et al.  The electronic structure of europium chalcogenides and pnictides , 2004, cond-mat/0403763.

[23]  P. Strange,et al.  Half-metallic to insulating behavior of rare-earth nitrides , 2004 .

[24]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[25]  M. Katsnelson,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[26]  G. Kido,et al.  Magnetic properties of stoichiometric Gd monopnictides , 1997 .

[27]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[28]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[29]  R. M. Moon,et al.  Magnetic properties of SmN , 1979 .

[30]  F. Hulliger Chapter 33 Rare earth pnictides , 1979 .

[31]  V. Pecharsky,et al.  Handbook on the physics and chemistry of rare earths , 1979 .

[32]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[33]  A. W. Lawson,et al.  Synthesis and magnetic behavior of GdN , 1975 .

[34]  W. Stutius Spezifische Wärme der Nitride Seltener Erden , 1969 .

[35]  W. Wallace,et al.  MAGNETIC CHARACTERISTICS OF SOME LANTHANIDE NITRIDES , 1966 .

[36]  J. H. Van Vleck,et al.  Effective Field Theories of Magnetism , 1966 .

[37]  P. Junod,et al.  Influence of crystal fields on the magnetic properties of the rare-earth nitrides , 1965 .

[38]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  R. Didchenko,et al.  Some electric and magnetic properties of rare earth monosulfides and nitrides , 1963 .