A plant receptor-like kinase required for both bacterial and fungal symbiosis

[1]  J. Jansa,et al.  A phosphate transporter expressed in arbuscule-containing cells in potato , 2001, Nature.

[2]  S. Shiu,et al.  Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Spaink,et al.  Cell biological changes of outer cortical root cells in early determinate nodulation. , 2001, Molecular plant-microbe interactions : MPMI.

[4]  J. Downie,et al.  Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Cook,et al.  Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. Schauser,et al.  The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. , 2000, Molecular plant-microbe interactions : MPMI.

[7]  E. Journet,et al.  Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway , 2000, Plant Cell.

[8]  J. Downie,et al.  Plant responses to nodulation factors. , 1999, Current opinion in plant biology.

[9]  Leif Schauser,et al.  A plant regulator controlling development of symbiotic root nodules , 1999, Nature.

[10]  T. Ellis,et al.  Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.) , 1999, Molecular and General Genetics MGG.

[11]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[12]  T. Thykjær,et al.  Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus , 1998, Molecular and General Genetics MGG.

[13]  L. Schauser,et al.  Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic Infection , 1998 .

[14]  F. Dazzo,et al.  Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus , 1998 .

[15]  T. Bisseling,et al.  Nod factor-induced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformation. , 1997, Molecular plant-microbe interactions : MPMI.

[16]  D. Ehrhardt,et al.  Calcium Spiking in Plant Root Hairs Responding to Rhizobium Nodulation Signals , 1996, Cell.

[17]  D. Soltis,et al.  Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Downie,et al.  Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O‐acetylation of the Rhizobium leguminosarum lipo‐oligosaccharide nodulation factor , 1993, Molecular microbiology.

[20]  R. Hellens,et al.  The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum) , 2004, Molecular and General Genetics MGG.

[21]  R. Ranjeva,et al.  Perception of lipo-chitooligosaccharidic Nod factors in legumes. , 2001, Trends in plant science.

[22]  Jonathan D. G. Jones,et al.  The Role of Leucine-Rich Repeat Proteins in Plant Defences , 1997 .

[23]  G. Duc,et al.  First report of non-mycorrhizal plant mutants (Myc−) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) , 1989 .

[24]  G. Duc,et al.  Mutagenesis of pea (Pisum sativum L.) and the isolation of mutants for nodulation and nitrogen fixation , 1989 .