Infinite dimensional Chevalley groups and Kac--Moody groups over $\mathbb{Z}$

Let $A$ be a symmetrizable generalized Cartan matrix. Let $\mathfrak{g}$ be the corresponding Kac--Moody algebra over a commutative ring $R$ with 1. We construct an infinite dimensional analog $G_V$ of a finite dimensional Chevalley group over $R$, constructed using integrable highest weight modules $V$, a $\Z$--form of the universal enveloping algebra of $\mathfrak{g}$ and a $\Z$--form $V_{\Z}$. Our construction naturally gives rise to `arithmetic' subgroups $G_V(\Z)$, which we also construct using representation theory. We prove a Bruhat decomposition $G_V({\mathbb{Q}})=G_V({\mathbb{Z}})B({\mathbb{Q}})$ over $\Q$. We also consider a universal representation-theoretic Kac--Moody group $G$ and prove that its arithmetic subgroup $\Gamma(\Z)$ coincides with the subgroup of integral points $G(\Z)$.

[1]  Robert Steinberg,et al.  Lectures on Chevalley Groups , 2016 .

[2]  Lisa Carbone,et al.  Kac--Moody groups and automorphic forms in low dimensional supergravity theories , 2016, 1602.02319.

[3]  Lisa Carbone,et al.  Uniqueness of representation--theoretic hyperbolic Kac--Moody groups over $\Z$ , 2015, 1512.04623.

[4]  Lisa Carbone,et al.  PRESENTATION OF HYPERBOLIC KAC-MOODY GROUPS OVER RINGS , 2014, 1409.5918.

[5]  Daniel Allcock,et al.  Presentation of affine Kac-Moody groups over rings , 2014, 1409.0176.

[6]  G. Rousseau Almost split Kac-Moody groups over ultrametric fields , 2012, 1202.6232.

[7]  H. Garland On Extending the Langlands-Shahidi Method to Arithmetic Quotients of Loop Groups , 2010, 1009.4507.

[8]  G. Rousseau Groupes de Kac-Moody d\'eploy\'es sur un corps local, II Masures ordonn\'ees , 2010, 1009.0138.

[9]  Ralf Kohl,et al.  Iwasawa decompositions of split Kac-Moody groups , 2007, 0709.3466.

[10]  B. Rémy,et al.  Topological groups of Kac--Moody type, right-angled twinnings and their lattices , 2006 .

[11]  Lisa Carbone,et al.  EXISTENCE OF LATTICES IN KAC–MOODY GROUPS OVER FINITE FIELDS , 2003 .

[12]  T. Damour,et al.  Cosmological Billiards , 2002, hep-th/0212256.

[13]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[14]  P. West E11 and M theory , 2001, hep-th/0104081.

[15]  E. Plotkin,et al.  Chevalley groups over commutative rings: I. Elementary calculations , 1996 .

[16]  J. Tits Uniqueness and presentation of Kac-Moody groups over fields , 1987 .

[17]  H. Garland The arithmetic theory of loop groups , 1980 .

[18]  H. Garland The arithmetic theory of loop algebras , 1978 .

[19]  R. Marcuson Tits' systems in generalized nonadjoint Chevalley groups , 1975 .

[20]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[21]  R. Moody,et al.  Tits' systems with crystallographic Weyl groups , 1972 .

[22]  M. R. Stein Chevalley groups over commutative rings , 1971 .

[23]  R. Moody A new class of Lie algebras , 1968 .

[24]  R. Moody Lie algebras associated with generalized Cartan matrices , 1967 .

[25]  E. Schenkman Infinite Lie algebras , 1952 .

[26]  T. Marquis Topological Kac-Moody groups and their subgroups , 2013 .

[27]  Basic Theory,et al.  Kac-Moody Groups , 2002 .

[28]  O. Mathieu Construction du groupe de Kac-Moody et applications , 1988 .

[29]  O. Mathieu Formules de caractères pour les algèbres de Kac-Moody générales , 1988 .

[30]  P. Slodowy An Adjoint Quotient for Certain Groups Attached to Kac-Moody Algebras , 1985 .

[31]  V. Kac,et al.  Defining relations of certain infinite-dimensional groups , 1984 .

[32]  R. Goodman,et al.  Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. , 1984 .

[33]  Zara L Whitlock,et al.  Additional contributions by , 1979 .

[34]  J. Humphreys On the hyperalgebra of a semisimple algebraic group , 1977 .

[35]  C. Chevalley,et al.  Sur certains groupes simples , 1955 .