SPARQL Query Containment Under Schema

Query containment is defined as the problem of determining if the result of a query is included in the result of another query for any dataset. It has major applications in query optimization and knowledge base verification. To date, testing query containment has been performed using different techniques: containment mapping, canonical databases, automata theory techniques and through a reduction to the validity problem in logic. Here, we use the latter technique to test containment of SPARQL queries using an expressive modal logic called $$\mu $$μ-calculus. For that purpose, we define an RDF graph encoding as a transition system which preserves its characteristics. In addition, queries and schema axioms are encoded as $$\mu $$μ-calculus formulae. Thereby, query containment can be reduced to testing validity in the logic. We identify various fragments of SPARQL and description logic schema languages for which containment is decidable. Additionally, we provide theoretically and experimentally proven procedures to check containment of these decidable fragments. Finally, we propose a benchmark for containment solvers which is used to test and compare the current state-of-the-art containment solvers.

[1]  Alberto O. Mendelzon,et al.  Foundations of semantic web databases , 2004, PODS.

[2]  Anthony Widjaja Lin,et al.  Expressive Languages for Path Queries over Graph-Structured Data , 2012, TODS.

[3]  Melisachew Wudage Chekol On the Containment of SPARQL Queries under Entailment Regimes , 2016, AAAI.

[4]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[5]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[6]  Diego Calvanese,et al.  Containment of Regular Path Queries under Description Logic Constraints , 2011, IJCAI.

[7]  Alfred V. Aho,et al.  Equivalences Among Relational Expressions , 1979, SIAM J. Comput..

[8]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[9]  Jérôme Euzenat,et al.  SPARQL Query Containment under RDFS Entailment Regime , 2012, IJCAR.

[10]  Georg Lausen,et al.  SP^2Bench: A SPARQL Performance Benchmark , 2008, 2009 IEEE 25th International Conference on Data Engineering.

[11]  Reinhard Pichler,et al.  Containment and equivalence of well-designed SPARQL , 2014, PODS.

[12]  Vassilis Christophides,et al.  Containment and Minimization of RDF/S Query Patterns , 2005, SEMWEB.

[13]  Alberto O. Mendelzon,et al.  Foundations of Semantic Web databases , 2011, J. Comput. Syst. Sci..

[14]  Jean-François Baget,et al.  RDF Entailment as a Graph Homomorphism , 2005, SEMWEB.

[15]  Melisachew Wudage Chekol Static Analysis of Semantic Web Queries. (Analyse Statique de Requête pour le Web Se'mantique) , 2012 .

[16]  Richard Cyganiak,et al.  A relational algebra for SPARQL , 2005 .

[17]  David S. Johnson,et al.  Testing containment of conjunctive queries under functional and inclusion dependencies , 1982, J. Comput. Syst. Sci..

[18]  Diego Calvanese,et al.  Conjunctive query containment and answering under description logic constraints , 2008, TOCL.

[19]  Jean-François Baget,et al.  Extending SPARQL with regular expression patterns (for querying RDF) , 2009, J. Web Semant..

[20]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[21]  Christian Bizer,et al.  The Berlin SPARQL Benchmark , 2009, Int. J. Semantic Web Inf. Syst..

[22]  Raghu Ramakrishnan,et al.  Containment of conjunctive queries: beyond relations as sets , 1995, TODS.

[23]  Dan Suciu,et al.  Query containment for conjunctive queries with regular expressions , 1998, PODS.

[24]  Jérôme Euzenat,et al.  PSPARQL Query Containment , 2011, DBPL.

[25]  Diego Calvanese,et al.  Anwering Recursive Queries under Keys and Foreign Keys is Undecidable , 2003, KRDB.

[26]  Pierre Genevès,et al.  Efficient static analysis of XML paths and types , 2007, PLDI '07.

[27]  Marcelo Arenas,et al.  Semantics and Complexity of SPARQL , 2006, International Semantic Web Conference.

[28]  Georg Lausen,et al.  SP2Bench: A SPARQL Performance Benchmark , 2008, Semantic Web Information Management.

[29]  Diego Calvanese,et al.  Reasoning on regular path queries , 2003, SGMD.

[30]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[31]  Jérôme Euzenat,et al.  SPARQL Query Containment Under SHI Axioms , 2012, AAAI.

[32]  Claudio Gutiérrez,et al.  The Expressive Power of SPARQL , 2008, SEMWEB.

[33]  Radu Mateescu,et al.  Extending SPARQL with Temporal Logic , 2008 .

[34]  Dave Reynolds,et al.  SPARQL basic graph pattern optimization using selectivity estimation , 2008, WWW.

[35]  Egor V. Kostylev,et al.  SPARQL with Property Paths , 2015, SEMWEB.

[36]  Egor V. Kostylev,et al.  On the Semantics of SPARQL Queries with Optional Matching under Entailment Regimes , 2014, SEMWEB.

[37]  Sven Groppe,et al.  Optimization of SPARQL by using coreSPARQL , 2009, ICEIS.

[38]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[39]  Birte Glimm,et al.  Using SPARQL with RDFS and OWL Entailment , 2011, Reasoning Web.

[40]  Axel Polleres,et al.  From SPARQL to rules (and back) , 2007, WWW '07.

[41]  Diego Calvanese,et al.  Containment of Conjunctive Regular Path Queries with Inverse , 2000, KR.

[42]  Shiyong Lu,et al.  Semantics Preserving SPARQL-to-SQL Query Translation for Optional Graph Patterns. Technical Report T , 2006 .

[43]  Jérôme Euzenat,et al.  Evaluating and Benchmarking SPARQL Query Containment Solvers , 2013, SEMWEB.

[44]  Pierre Genevès,et al.  A system for the static analysis of XPath , 2006, TOIS.

[45]  D. Kozen Results on the Propositional µ-Calculus , 1982 .

[46]  Jorge Pérez,et al.  Minimal Deductive Systems for RDF , 2007, ESWC.

[47]  Masami Hagiya,et al.  A decision procedure for alternation-free modal µ-calculi , 2008, Advances in Modal Logic.

[48]  Michael Schmidt,et al.  Foundations of SPARQL query optimization , 2008, ICDT '10.