Synthesis and electrochemical characterization of orthorhombic LiMnO2 material

[1]  M. Yoshio,et al.  Preparation of Orthorhombic LiMnO2 Material by Quenching , 2001 .

[2]  J. Goodenough,et al.  Effect of ball-milling on 3-V capacity of lithium-manganese oxospinel cathodes , 2001 .

[3]  Y. Chiang,et al.  Electrochemical Cycling‐Induced Spinel Formation in High‐Charge‐Capacity Orthorhombic LiMnO2 , 1999 .

[4]  Y. Chiang,et al.  High Capacity, Temperature‐Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries , 1999 .

[5]  A. Manthiram,et al.  Amorphous Manganese Oxyiodides Exhibiting High Lithium Intercalation Capacity at Higher Current Density , 1999 .

[6]  Arumugam Manthiram,et al.  A manganese oxyiodide cathode for rechargeable lithium batteries , 1997, Nature.

[7]  L. Croguennec,et al.  Electrochemical Cyclability of Orthorhombic LiMnO2 Characterization of Cycled Materials , 1997 .

[8]  C. Delmas,et al.  A new variety of LiMnO2 with a layered structure , 1996 .

[9]  H. Sakaebe,et al.  Electrochemical and magnetic properties of lithium manganese oxide spinels prepared by oxidation at low temperature of hydrothermally obtained LiMnO2 , 1996 .

[10]  M. Broussely,et al.  Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder , 1996 .

[11]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[12]  M. Yoshio,et al.  Studies on LiMnO spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part II. Optimum spinel from γ-MnOOH , 1995 .

[13]  M. Yoshio,et al.  Three V or 4 V LiMn composite as cathode in Li batteries prepared by LiNO3 method as Li source , 1995 .

[14]  J. J. Murray,et al.  Lithium-ion cell based on orthorhombic LiMnO2 , 1995 .

[15]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[16]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[17]  M. Thackeray,et al.  An Investigation of Spinel‐Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries , 1994 .

[18]  M. Thackeray,et al.  Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel , 1993 .

[19]  J. Dahn,et al.  Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures , 1993 .

[20]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[21]  P. Strobel,et al.  Hydrothermal and flux synthesis of LiMnO compounds: Crystal growth of LiMnO2 and Li2MnO3 , 1984 .

[22]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[23]  G. Brachtel,et al.  Zur Kenntnis der Oxomanganate(III):, Über LiMnO2 und β‐NaMnO2 [1] , 1975 .

[24]  W. D. Johnston,et al.  A Study of the LixMn(1-x)O System1 , 1956 .

[25]  C. Yoon,et al.  Structural Characterization of Mn-Based Materials Using γ-MnOOH Source , 2002 .

[26]  MyungSeung-Taek,et al.  Orthorhombic LiMnO2 as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal Route at 170 °C , 2001 .

[27]  Yasushi Murakami,et al.  Ti ‐ V ‐ W ‐ O / Ti Oxide Electrodes as Candidates for Electrochemical Capacitors , 1999 .

[28]  H. Kanoh,et al.  Lithium Ion Extraction from Orthorhombic LiMnO2in Ammonium Peroxodisulfate Solutions , 1999 .

[29]  E. Akiba,et al.  New Findings on the Structural Phase Transitions of Spinel LiMn2O4 at Low Temperature , 1998 .

[30]  L. Croguennec,et al.  Preparation, physical and structural characterization of LiMnO2 samples with variable cationic disorder , 1995 .

[31]  B. Scrosati,et al.  On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries , 1982 .

[32]  J. Broadhead,et al.  Materials for Advanced Batteries , 1980 .