Analysis of Data Mining for Forecasting Total Goods Delivery with Moving Average Method

In the logistics and distribution of goods, the expedition service is necessary, because the expedition is an important part of a business that has a strong attachment to the distribution. The number of deliveries from an expedition per period is uncertain, sometimes the number increases or decreases. This may result in an imbalance between existing facilities and employees and the number of shipments from customers or company policies. To overcome this, required forecasting techniques that are able to predict total shipments, as well as predict which goods and products are the most widely sent. The moving average method using the last 5 period data is used as a way of forecasting. MAPE (Mean Absolute % Error) is used as a test method, and a result of 34 %, indicates that the method is feasible to use. Keywords—Data Mining; Forecasting; Moving Average; MAPE (Mean Absolute % Error); Expedition; Goods; Product.

[1]  Liang-Ying Wei,et al.  A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting , 2016, Appl. Soft Comput..

[2]  E. Vercher,et al.  Forecasting correlated time series with exponential smoothing models , 2011 .

[3]  Rachmat Hidayat Sistem Informasi Ekspedisi Barang Dengan Metode E-CRM Untuk Meningkatkan Pelayanan Pelanggan , 2014 .

[4]  Ani Shabri,et al.  Time Series Forecasting using Least Square Support Vector Machine for Canadian Lynx Data , 2014 .

[5]  Wiwik Anggraeni,et al.  Pembuatan Aplikasi Pendukung Keputusan untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) di CV. Asia , 2014 .

[6]  H. Susanto,et al.  Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu , 2014 .

[7]  Seng Hansun,et al.  Implementasi data mining dengan algoritma C4.5 untuk memprediksi tingkat kelulusan mahasiswa , 2014 .

[8]  N. L. A. K. Yuniastari,et al.  Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Exponential Smoothing , 2014 .

[9]  Ni Kadek Sukerti Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model , 2015 .

[10]  Ramli Ramli,et al.  ANALISIS PERAMALAN EKSPOR INDONESIA PASCA KRISIS KEUANGAN EROPA DAN GLOBAL TAHUN 2008 DENGAN METODE DEKOMPOSISI , 2013 .

[11]  Theresa L. Utlaut,et al.  Introduction to Time Series Analysis and Forecasting , 2008 .