Advances in Distributed Agent-Based Retrieval Tools

In this chapter we illustrate our vision about the evolution of search engines, dealing with some emerging questions related to the social role of the user on the Web and to the actual approach to access the information. In this scenario, is ever more evident the need to redefine the information paradigm bringing the information to the user and not more the user to the information, with search engines able to provide results without direct questions from users, anticipating their needs. A Web in service of the user, automatically informed by the system with suggested resources related with his life style and his common behavior without the need to ask for them. This approach will be applied to a project named A Semantic Search Engine for a Business Network where the development of a business network creates a point of contact between the academic and the research world and the productive one by the introduction of Natural Language Processing, user profiling, automatic information classification according to users’ personal schemas, contributing in such a way to redefine the vision of information and delineating processes of Human-Machine Interaction.

[1]  Bing Dong,et al.  Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings , 2009 .

[2]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[3]  Atanas Kiryakov,et al.  OWLIM - A Pragmatic Semantic Repository for OWL , 2005, WISE Workshops.

[4]  Franz Baader,et al.  Tableau Algorithms for Description Logics , 2000, TABLEAUX.

[5]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[6]  Nizar Habash,et al.  Generation from Lexical Conceptual Structures , 2000 .

[7]  Lawrence B. Holder,et al.  Automating inhabitant interactions in home and workplace environments through data-driven generation of hierarchical partially-observable markov decision processes , 2005 .

[8]  Jiawei Han,et al.  Data Mining: Concepts and Techniques, Second Edition , 2006, The Morgan Kaufmann series in data management systems.

[9]  Kerstin Denecke,et al.  Using SentiWordNet for multilingual sentiment analysis , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[10]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[11]  Guy Shani,et al.  Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.

[12]  Sabine Bergler,et al.  Mining WordNet for a Fuzzy Sentiment: Sentiment Tag Extraction from WordNet Glosses , 2006, EACL.

[13]  F. Y. Wu The Potts model , 1982 .

[14]  Dragomir R. Radev,et al.  Identifying Text Polarity Using Random Walks , 2010, ACL.

[15]  Zhengxiang Pan Benchmarking DL Reasoners Using Realistic Ontologies , 2005, OWLED.

[16]  Pasquale Lops,et al.  Can a Recommender System Induce Serendipitous Encounters , 2010 .

[17]  Noah A. Smith,et al.  What is the Jeopardy Model? A Quasi-Synchronous Grammar for QA , 2007, EMNLP.

[18]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[19]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[20]  Cesar Augusto Tacla,et al.  Dialog construction in a collaborative project management environment , 2010, The 2010 14th International Conference on Computer Supported Cooperative Work in Design.

[21]  Michael L. Littman,et al.  Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus , 2002, ArXiv.

[22]  David Levine,et al.  PICO: A Middleware Framework for Pervasive Computing , 2003, IEEE Pervasive Comput..

[23]  Christoph Frschl User Modeling and User Profiling in Adaptive , 2008 .

[24]  Vivi Nastase,et al.  Do Happy Words Sound Happy ? A study of the relation between form and meaning for English words expressing emotions , .

[25]  Songbo Tan,et al.  A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..

[26]  Edward A. Fox,et al.  Research Contributions , 2014 .

[27]  Razvan C. Bunescu,et al.  Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques , 2003, Third IEEE International Conference on Data Mining.

[28]  Sriram Ramabhadran,et al.  A case study in building layered DHT applications , 2005, SIGCOMM '05.

[29]  Candace L. Sidner,et al.  Attention, Intentions, and the Structure of Discourse , 1986, CL.

[30]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[31]  Gary Marchionini,et al.  Finding facts vs. browsing knowledge in hypertext systems , 1988, Computer.

[32]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[33]  Miguel-Ángel Sicilia,et al.  Defining SPEM 2 Process Constraints with Semantic Rules Using SWRL , 2009 .

[34]  Jin-Cheon Na,et al.  Sentiment analysis of movie reviews on discussion boards using a linguistic approach , 2009, CIKM 2009.

[35]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[36]  Marie-Hélène Abel,et al.  Learning Object Indexing Tool Based on a LOM Ontology , 2008, 2008 Eighth IEEE International Conference on Advanced Learning Technologies.

[37]  J. Bresnan Lexical-Functional Syntax , 2000 .

[38]  Salvatore Gaglio,et al.  Human-ambient interaction through Wireless Sensor Networks , 2009, 2009 2nd Conference on Human System Interactions.

[39]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[40]  Tom Fawcett,et al.  Combining Data Mining and Machine Learning for Effective User Profiling , 1996, KDD.

[41]  Cynthia Whissell,et al.  THE DICTIONARY OF AFFECT IN LANGUAGE , 1989 .

[42]  Sara Tonelli,et al.  Semantic Processing for Text Entailment with VENSES , 2009, TAC.

[43]  Ahmad Lotfi,et al.  Occupant behaviour prediction in ambient intelligence computing environment , 2008 .

[44]  Bhaskar Mehta,et al.  Ontologically-Enriched Unified User Modeling for Cross-System Personalization , 2005, User Modeling.

[45]  Takashi Inui,et al.  Extracting Semantic Orientations of Words using Spin Model , 2005, ACL.

[46]  Agostino Poggi Developing ontology based applications with O3L , 2009 .

[47]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[48]  Hiroya Takamura,et al.  Sentiment Classification Using Word Sub-sequences and Dependency Sub-trees , 2005, PAKDD.

[49]  Rodolfo Delmonte Semantic and Pragmatic Computing with GETARUNS , 2008, STEP.

[50]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[51]  Andrea Esuli,et al.  Determining the semantic orientation of terms through gloss classification , 2005, CIKM '05.

[52]  Kenneth C. Litkowski,et al.  Syntactic Clues and Lexical Resources in Question-Answering , 2000, TREC.

[53]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[54]  Bijan Parsia,et al.  Pellet: An OWL DL Reasoner , 2004, Description Logics.

[55]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[56]  A. Boccalatte,et al.  An Agent-based Semantic Search Engine for Scalable Enterprise Applications , 2009 .

[57]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[58]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[59]  Agostino Poggi,et al.  Integrating Peer-to-Peer and Multi-agent Technologies for the Realization of Content Sharing Applications , 2011, Information Retrieval and Mining in Distributed Environments.

[60]  Tat-Seng Chua,et al.  Question answering passage retrieval using dependency relations , 2005, SIGIR '05.

[61]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[62]  E. Bono Lateral Thinking: A Textbook of Creativity , 1970 .

[63]  Mouzhi Ge,et al.  Beyond accuracy: evaluating recommender systems by coverage and serendipity , 2010, RecSys '10.

[64]  Royston M. Roberts,et al.  Serendipity: Accidental Discoveries in Science , 1989 .

[65]  Christopher Joseph Pal,et al.  Cross Lingual Adaptation: An Experiment on Sentiment Classifications , 2010, ACL.

[66]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[67]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[68]  Hani Hagras,et al.  A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[69]  Marco Luca Sbodio,et al.  Representation of Semantics in an eGovernment Platform , 2008 .

[70]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[71]  Michael Gamon,et al.  Automatic Identification of Sentiment Vocabulary: Exploiting Low Association with Known Sentiment Terms , 2005, ACL 2005.

[72]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[73]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[74]  Esmond Pitt,et al.  java.rmi: The Remote Method Invocation Guide , 2001 .

[75]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[76]  Marco Luca Sbodio,et al.  Adding Support to User Interaction in Egovernment Environment , 2006, Advances in Web Intelligence and Data Mining.

[77]  Rodolfo Delmonte,et al.  Computational Linguistic Text Processing – Lexicon, Grammar, Parsing and Anaphora Resolution , 2008 .

[78]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[79]  Giuseppe Lo Re,et al.  Nds Lab -networking and Distributed Systems Exploiting the Human Factor in a Wsn-based System for Ambient Intelligence Exploiting the Human Factor in a Wsn-based System for Ambient Intelligence , 2022 .

[80]  Francesco Piazza,et al.  RDFGrowth, a P2P annotation exchange algorithm for scalable Semantic Web applications , 2004, P2PKM.

[81]  Dietrich Klakow,et al.  The Role of Knowledge-based Features in Polarity Classification at Sentence Level , 2009, FLAIRS Conference.

[82]  Elena Paslaru Bontas,et al.  Reasoning paradigms for OWL ontologies , 2004 .

[83]  Luca Lombardi,et al.  Challenges for Data Mining in Distributed Sensor Networks , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[84]  Rada Mihalcea,et al.  Word Sense and Subjectivity , 2006, ACL.

[85]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[86]  Taieb Znati,et al.  Semantic driven hashing (SDH): an ontology-based search scheme for the semantic aware network (SA Net) , 2004, Proceedings. Fourth International Conference on Peer-to-Peer Computing, 2004. Proceedings..

[87]  Matthias Klusch,et al.  Intelligent Information Agents , 2003, Lecture Notes in Computer Science.