Iterative Data-Driven ${\cal H}_{\infty}$ Norm Estimation of Multivariable Systems With Application to Robust Active Vibration Isolation

This paper aims to develop a new data-driven H∞ norm estimation algorithm for model-error modeling of multivariable systems. An iterative approach is presented that requires significantly a fewer prior assumptions on the true system, hence it provides stronger guarantees in a robust control design. The iterative estimation algorithm is embedded in a robust control design framework with a judiciously selected uncertainty structure to facilitate high control performance. The approach is experimentally implemented on an industrial active vibration isolation system.

[1]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[2]  Robert Kosut,et al.  Closed-Loop Identification via the Fractional Representation: Experiment Design , 1989, 1989 American Control Conference.

[3]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[4]  Ruud J. P. Schrama Accurate identification for control: the necessity of an iterative scheme , 1992 .

[5]  Douwe K. de Vries,et al.  Quantification of model uncertainty from data , 1994 .

[6]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[7]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[10]  Philip A. Nelson,et al.  Active control of vibration, 1st edition , 1996 .

[11]  P. V. D. Hof,et al.  Suboptimal feedback control by a scheme of iterative identification and control design , 1997 .

[12]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[13]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[14]  G. Vinnicombe Uncertainty and Feedback: H-[infinity] loop shaping and the v-gap metric , 2000 .

[15]  B. Pasik-Duncan Control-oriented system identification: An H∞ approach , 2002 .

[16]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[17]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[18]  Yuichi Chida,et al.  Identification and frequency shaping control of a vibration isolation system , 2004 .

[19]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[20]  Sippe G. Douma,et al.  Relations between uncertainty structures in identification for robust control , 2005, Autom..

[21]  Andrew G. Alleyne,et al.  A hybrid control strategy for active vibration isolation with electrohydraulic actuators , 2005 .

[22]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[23]  Bo Wahlberg,et al.  Gain estimation for Hammerstein systems , 2006 .

[24]  E. Rogers,et al.  Robustness analysis of an adjoint optimal iterative learning controller with experimental verification , 2008 .

[25]  Tom Oomen,et al.  Well-Posed Model Uncertainty Estimation by Design of Validation Experiments , 2009 .

[26]  Bo Wahlberg,et al.  Non-parametric methods for L2-gain estimation using iterative experiments , 2010, Autom..

[27]  Okko H. Bosgra,et al.  System identification for achieving robust performance , 2012, Autom..

[28]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[29]  Bo Wahlberg,et al.  Analyzing iterations in identification with application to nonparametric H∞-norm estimation , 2012, Autom..

[30]  Håkan Hjalmarsson,et al.  Iteratively learning the ℌ∞-norm of multivariable systems applied to model-error-modeling of a vibration isolation system , 2013, 2013 American Control Conference.