Optical absorption enhancement in silicon nanowire and nanohole arrays for photovoltaic applications

In this proceeding, we simulate the optical properties of vertically-aligned silicon nanowire and nanohole arrays using the transfer matrix method. We find that the optical absorption in both silicon nanowire and nanohole arrays improves with increasing lattice constant up to 600nm - 700nm. We attribute the observed optical absorption enhancement effect to an increase in the field concentration inside the active silicon region and the excitation of guided resonance modes. For optimized parameters, both structures can be more absorptive than an equally-thick silicon solid film with an optimal single layer Si3N4 anti-reflection coating. This conclusion holds true for both optically thin (2.33μm) and optically thick (100μm) structures. For optically thin structures, the enhancement in the optimal nanohole array exceeds the conventional light trapping limit. For optically thick structures, the enhancement in both optimal nanohole and nanowire arrays exceeds the light trapping limit. Additionally, we show that the overall absorption efficiencies for hexagonal and square lattices of nanowires are very similar.

[1]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[2]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[3]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[4]  E. Yablonovitch Statistical ray optics , 1982 .

[5]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[6]  Nathan S. Lewis,et al.  Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate , 2008 .

[7]  E. Yablonovitch,et al.  Maximum statistical increase of optical absorption in textured semiconductor films. , 1983, Optics letters.

[8]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[9]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[10]  Mukul Agrawal,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. , 2010, Optics express.

[11]  K. Ho,et al.  High-efficiency calculations for three-dimensional photonic crystal cavities. , 2006, Optics letters.

[12]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[13]  Rene Lopez,et al.  Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers. , 2009, Optics express.

[14]  Steven G. Johnson,et al.  Global optimization of silicon photovoltaic cell front coatings. , 2009, Optics express.

[15]  F. Falk,et al.  Silicon nanowire-based solar cells , 2008, Nanotechnology.

[16]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[17]  Yi Cui,et al.  Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching , 2008 .

[18]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[19]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[20]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[21]  L. Tsakalakos Nanostructures for photovoltaics , 2008 .

[22]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[23]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[24]  John B. Pendry,et al.  Photonic Band Structures , 1994 .

[25]  K. Ho,et al.  Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation. , 2006, Optics letters.

[26]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[27]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[28]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[29]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[30]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[31]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.