Ensemble RBF modeling technique for quality design

Abstract This paper proposes an ensemble radial basis function neural network that selects important RBF subsets based on Pareto chart using Bootstrap samples. Then, the analysis of variance method is used to determine the choice of the unequal/equal weights. The effectiveness of the proposed technique is illustrated with a micro-drilling process. The comparison results show that the proposed technique can not only improve the model prediction performance, but also generate a reliable scheme for quality design.

[1]  Jai-Hyun Byun,et al.  Robust design under normal model departure , 2017, Comput. Ind. Eng..

[2]  S.Y. Yang,et al.  A response surface methodology based on improved compactly supported radial basis function and its application to rapid optimizations of electromagnetic devices , 2005, IEEE Transactions on Magnetics.

[3]  Byung Rae Cho,et al.  Robust parameter design in embedded high-variability production processes: an alternative approach to mitigating sources of variability , 2013 .

[4]  G. Vining,et al.  Response Surfaces for the Mean and Variance Using a Nonparametric Approach , 1998 .

[5]  Wen Wan,et al.  A semiparametric technique for the multi‐response optimization problem , 2011, Qual. Reliab. Eng. Int..

[6]  Masao Arakawa,et al.  Sequential approximate multi-objective optimization using radial basis function network , 2013 .

[7]  Christine M. Anderson-Cook,et al.  A semi-parametric approach to robust parameter design , 2008 .

[8]  Dennis K. J. Lin,et al.  Bayesian analysis for weighted mean‐squared error in dual response surface optimization , 2010, Qual. Reliab. Eng. Int..

[9]  Wanzhu Tu,et al.  Dual response surface optimization , 1995 .

[10]  Wayne L. Tabor,et al.  Global and local optimization using radial basis function response surface models , 2007 .

[11]  George S. Dulikravich,et al.  A response surface method-based hybrid optimizer , 2008 .

[12]  Dennis K. J. Lin,et al.  Optimization of multiple responses considering both location and dispersion effects , 2006, Eur. J. Oper. Res..

[13]  N. Doganaksoy,et al.  Joint Optimization of Mean and Standard Deviation Using Response Surface Methods , 2003 .

[14]  R. H. Myers,et al.  Response Surface Techniques for Dual Response Systems , 1973 .

[15]  In-Jun Jeong,et al.  Generating evenly distributed nondominated solutions in dual response surface optimization , 2019 .

[16]  Dequn Zhou,et al.  Ensemble modeling based on 0-1 programming in micro-manufacturing process , 2018, Comput. Ind. Eng..

[17]  Li-Fei Chen,et al.  Combining neural networks and genetic algorithms for optimising the parameter design of the inter-metal dielectric process , 2012 .

[18]  Jai-Hyun Byun,et al.  An interval approach to robust design with parameter uncertainty , 2016 .

[19]  Jyh-Cheng Yu,et al.  Robust design optimisation via surrogate network model and soft outer array design , 2018, Int. J. Prod. Res..

[20]  Sanjay B. Joshi,et al.  Metamodeling: Radial basis functions, versus polynomials , 2002, Eur. J. Oper. Res..

[21]  Xia Hong,et al.  Experimental design and model construction algorithms for radial basis function networks , 2003, Int. J. Syst. Sci..

[22]  C. F. Jeff Wu,et al.  Experiments , 2021, Wiley Series in Probability and Statistics.

[23]  H. Fang,et al.  Global response approximation with radial basis functions , 2006 .

[24]  Mei Han,et al.  Integrated parameter and tolerance design with computer experiments , 2016 .

[25]  Dong-Hee Lee,et al.  Dual-response optimization using a patient rule induction method , 2018 .

[26]  Jai-Hyun Byun,et al.  A Prediction Region‐based Approach to Model Uncertainty for Multi‐response Optimization , 2016, Qual. Reliab. Eng. Int..

[27]  Dennis K. J. Lin,et al.  Dual-Response Surface Optimization: A Weighted MSE Approach , 2004 .

[28]  Taimoor Akhtar,et al.  Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection , 2016, J. Glob. Optim..

[29]  Ying Feng,et al.  Ensemble of Surrogates for Dual Response Surface Modeling in Robust Parameter Design , 2013, Qual. Reliab. Eng. Int..

[30]  Jeffrey B. Birch,et al.  A semi-parametric approach to dual modeling when no replication exists , 2010 .

[31]  Christian B Allen,et al.  Investigation of an adaptive sampling method for data interpolation using radial basis functions , 2010 .

[32]  T. Kim,et al.  Optimization of welding parameters for resistance spot welding of TRIP steel with response surface methodology , 2002 .

[33]  Qian Wang,et al.  An adaptive RBF-based multi-objective optimization method for crashworthiness design of functionally graded multi-cell tube , 2016 .

[34]  Jianjun Wang,et al.  A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability , 2016, Eur. J. Oper. Res..

[35]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[36]  Martti Juhola,et al.  On principal component analysis, cosine and Euclidean measures in information retrieval , 2007, Inf. Sci..

[37]  Christopher J. Nachtsheim,et al.  Design augmentation for response optimization and model estimation , 2018 .

[38]  Zhen He,et al.  A robust desirability function method for multi-response surface optimization considering model uncertainty , 2012, Eur. J. Oper. Res..

[39]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[40]  C. Shoemaker,et al.  Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization , 2013 .