Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice

[1]  I. Haga,et al.  IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes , 2017, Nature Communications.

[2]  S. Paludan,et al.  Viral evasion of DNA-stimulated innate immune responses , 2016, Cellular & Molecular Immunology.

[3]  Jared E. Toettcher,et al.  Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection , 2016, mBio.

[4]  D. Pisetsky Anti-DNA antibodies — quintessential biomarkers of SLE , 2016, Nature Reviews Rheumatology.

[5]  K. Elkon,et al.  Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity. , 2016, Annual review of medicine.

[6]  Elizabeth E Gray,et al.  DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway , 2015, Science.

[7]  Zhijian J. Chen,et al.  Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases , 2015, Proceedings of the National Academy of Sciences.

[8]  Elizabeth E Gray,et al.  Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi–Goutières Syndrome , 2015, The Journal of Immunology.

[9]  Zhigang Zhang,et al.  Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses , 2015, Proceedings of the National Academy of Sciences.

[10]  Charles M. Rice,et al.  Corrigendum: A diverse range of gene products are effectors of the type I interferon antiviral response , 2015, Nature.

[11]  Jonathan L. Schmid-Burgk,et al.  Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. , 2015, Cell host & microbe.

[12]  H. Virgin,et al.  The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. , 2015, Cell host & microbe.

[13]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. , 2015, Cell host & microbe.

[14]  A. Bowie,et al.  Innate immune recognition of DNA: A recent history. , 2015, Virology.

[15]  J. An,et al.  Cutting Edge: Antimalarial Drugs Inhibit IFN-β Production through Blockade of Cyclic GMP-AMP Synthase–DNA Interaction , 2015, The Journal of Immunology.

[16]  D. C. Hancks,et al.  cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection , 2015, Proceedings of the National Academy of Sciences.

[17]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[18]  Matthew E. Ritchie,et al.  Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production , 2014, Cell.

[19]  G. Barber,et al.  Intrinsic Self-DNA Triggers Inflammatory Disease Dependent on STING , 2014, The Journal of Immunology.

[20]  V. Lupashin,et al.  The DNA Sensor, Cyclic GMP–AMP Synthase, Is Essential for Induction of IFN-β during Chlamydia trachomatis Infection , 2014, The Journal of Immunology.

[21]  T. Decker,et al.  Listeria monocytogenes induces IFNβ expression through an IFI16‐, cGAS‐ and STING‐dependent pathway , 2014, The EMBO journal.

[22]  V. Hornung,et al.  OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids , 2014, Nature Reviews Immunology.

[23]  Zhijian J. Chen,et al.  The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. , 2014, Molecular cell.

[24]  Zhijian J. Chen,et al.  Innate immune sensing and signaling of cytosolic nucleic acids. , 2014, Annual review of immunology.

[25]  K. Fitzgerald,et al.  Recognition of cytosolic DNA by cGAS and other STING‐dependent sensors , 2014, European journal of immunology.

[26]  Zhijian J. Chen,et al.  The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. , 2014, Cell reports.

[27]  Zhijian J. Chen,et al.  Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects , 2013, Science.

[28]  Nan Yan,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses , 2013, Science.

[29]  Roger A. Jones,et al.  Structure-Function Analysis of STING Activation by c[G(2′,5′)pA(3′,5′)p] and Targeting by Antiviral DMXAA , 2013, Cell.

[30]  Andrew S. Kohlway,et al.  Defining the functional determinants for RNA surveillance by RIG-I , 2013, EMBO reports.

[31]  Zhijian J. Chen,et al.  Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. , 2013, Molecules and Cells.

[32]  V. Hornung,et al.  cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING , 2013, Nature.

[33]  R. Vance,et al.  The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. , 2013, Cell reports.

[34]  V. Hornung,et al.  Structural mechanism of cytosolic DNA sensing by cGAS , 2013, Nature.

[35]  A. Bowie,et al.  Immune sensing of DNA. , 2013, Immunity.

[36]  Roger A. Jones,et al.  Cyclic [G(2′,5′)pA(3′,5′)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMP-AMP Synthase , 2013, Cell.

[37]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway , 2013, Science.

[38]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA , 2013, Science.

[39]  R. Vance,et al.  STING and the innate immune response to nucleic acids in the cytosol , 2012, Nature Immunology.

[40]  John H Livingston,et al.  Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature , 2012, Nature Genetics.

[41]  R. Naumann,et al.  Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity , 2012, The Journal of experimental medicine.

[42]  Martin A. M. Reijns,et al.  Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development , 2012, Cell.

[43]  Sarah E. Ewald,et al.  Nucleic acid recognition by the innate immune system. , 2011, Annual review of immunology.

[44]  A. Bowie,et al.  IFI16 is an innate immune sensor for intracellular DNA , 2010, Nature Immunology.

[45]  Y. Blat Non‐Competitive Inhibition by Active Site Binders , 2010, Chemical biology & drug design.

[46]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[47]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[48]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[49]  G. Barber,et al.  STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity , 2009, Nature.

[50]  Xiaoping Zhou,et al.  ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization , 2009, Proceedings of the National Academy of Sciences.

[51]  G. Barber,et al.  STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling , 2008, Nature.

[52]  Y. Li,et al.  The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. , 2008, Immunity.

[53]  T. Heidmann,et al.  Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity , 2008, Cell.

[54]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[55]  Gabriela Chiosis,et al.  High-Throughput Screening Fluorescence Polarization Assay for Tumor-Specific Hsp90 , 2007, Journal of biomolecular screening.

[56]  D. Barnes,et al.  Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. , 2007, American journal of human genetics.

[57]  D. Barnes,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus , 2006, Nature Genetics.

[58]  D. Barnes,et al.  Gene-Targeted Mice Lacking the Trex1 (DNase III) 3′→5′ DNA Exonuclease Develop Inflammatory Myocarditis , 2004, Molecular and Cellular Biology.

[59]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[60]  E. Borowski,et al.  The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations. , 1998, Acta biochimica Polonica.

[61]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[62]  H. Gutfreund,et al.  Enzyme kinetics , 1975, Nature.