Effect of incidence angle and polarization on the optimized layer structure of organic solar cells

Abstract We theoretically and experimentally investigate the effect of the incidence angle and polarization of sunlight on the optimized layer structure of organic solar cells (OSCs) to obtain the best absorption efficiency in a realistic deployment situation. We use the generalized transfer matrix method with respect to the incidence angle and polarization, which can calculate the spatial distribution of the optical power dissipation in both the incoherent glass substrate and the coherent multilayer without using any indirect correction factor. The angular dependence of the short-circuit current, the open-circuit voltage, and the output electric power is calculated and compared with the experimental results. Using the simulation parameters matched with the experimental results, we calculate the generation energy density per day by considering the variation of the incidence angle during daytime and determine the optimized thickness of the active region for maximum absorption efficiency. We show that the optimized active-region thickness based on the generation energy density per day is different from that determined from the variation of the short-circuit current density in only normal incidence, which is generally used for optimizing device structure of OSCs.

[1]  Yongbing Long Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells , 2010 .

[2]  Barry P Rand,et al.  The angular response of ultrathin film organic solar cells , 2008 .

[3]  Jin Jang,et al.  Optical Modeling and Analysis of Organic Solar Cells with Coherent Multilayers and Incoherent Glass Substrate Using Generalized Transfer Matrix Method , 2011 .

[4]  Christoph J. Brabec,et al.  Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements , 2004 .

[5]  D. Siapkas,et al.  Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. , 1995, Applied optics.

[6]  Jin Jang,et al.  Electrical properties of inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk hetero-junction solar cell with Cs2CO3 and MoO3 layers , 2011 .

[7]  Fang-Chung Chen,et al.  Cesium carbonate as a functional interlayer for polymer photovoltaic devices , 2008 .

[8]  O. Inganäs,et al.  Optical optimization of polyfluorene-fullerene blend photodiodes , 2005 .

[9]  W. K. Chan,et al.  Spectroscopic ellipsometry characterization of polymer–fullerene blend films , 2008 .

[10]  Philip Hvidthøft Delff Andersen,et al.  Investigation of optical spacer layers from solution based precursors for polymer solar cells using X-ray reflectometry , 2009 .

[11]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[12]  H. Ade,et al.  The effect of angle of incidence on the optical field distribution within thin film organic solar cells , 2009 .

[13]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[14]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[15]  B. Ruhstaller,et al.  Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis , 2009, 0911.2885.

[16]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[17]  Charalambos C. Katsidis,et al.  General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. , 2002, Applied optics.

[18]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[19]  Olle Inganäs,et al.  Full day modelling of V-shaped organic solar cell , 2011 .

[20]  Ye Tao,et al.  Highly efficient polycarbazole-based organic photovoltaic devices , 2009 .

[21]  Jin Jang,et al.  Degradation of Poly(3-hexylthiophene):Methano-Fullerene [6,6]-Phenyl-C71 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells and Annealing Effect on the Degraded Devices , 2011 .

[22]  Won Ho Jo,et al.  A computational study on optimal design for organic tandem solar cells , 2011 .

[23]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[24]  A. Donges,et al.  The coherence length of black-body radiation , 1998 .

[25]  C. Deibel,et al.  Polaron recombination in pristine and annealed bulk heterojunction solar cells , 2008 .

[26]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[27]  I. Alexandrou,et al.  Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites , 2007 .

[28]  Jungho Kim,et al.  Optical Modeling for Polarization-dependent Optical Power Dissipation of Thin-film Organic Solar Cells at Oblique Incidence , 2012 .

[29]  L. S. Roman,et al.  Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices , 2001 .

[30]  Yongbing Long Improving optical performance of inverted organic solar cells by microcavity effect , 2009 .

[31]  Jiří Stuchlík,et al.  Non-Langevin bimolecular recombination in low-mobility materials , 2006 .

[32]  G. Namkoong,et al.  Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM , 2010 .

[33]  Christoph J. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .