Rank‐one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two‐dimensional case

We show that, in the two-dimensional case, every objective, isotropic and isochoric energy function that is rank-one convex on GL+(2) is already polyconvex on GL+(2). Thus, we answer in the negative Morrey's conjecture in the subclass of isochoric nonlinear energies, since polyconvexity implies quasi-convexity. Our methods are based on different representation formulae for objective and isotropic functions in general, as well as for isochoric functions in particular. We also state criteria for these convexity conditions in terms of the deviatoric part of the logarithmic strain tensor.

[1]  F. J. Terpstra Die Darstellung biquadratischer Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung , 1939 .

[2]  P. Pedregal Some evidence in favor of Morrey's conjecture , 2014, 1406.7199.

[3]  H. Simpson,et al.  On Bifurcation in Finite Elasticity: Buckling of a Rectangular Rod , 2008 .

[4]  J. Ball Sets of gradients with no rank-one connections , 1990 .

[5]  P. Pedregal Some remarks on quasiconvexity and rank-one convexity , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  John M. Ball,et al.  Does Rank-One Convexity Imply Quasiconvexity? , 1987 .

[7]  A criterion for the strong ellipticity of the equilibrium equations of an isotropic non-linearly elastic material , 2011 .

[8]  T. Böhlke,et al.  On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations , 2007 .

[9]  J. Ball Some Open Problems in Elasticity , 2002 .

[10]  Patrizio Neff Critique of "Two-dimensional examples of rank-one convex functions that are not quasiconvex" by M. K. Benaouda and J. J. Telega , 2005 .

[11]  Patrick Laborde,et al.  An existence theorem for slightly compressible materials in nonlinear elasticity , 1988 .

[12]  Patrizio Neff,et al.  The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity , 2015, 1501.06780.

[13]  K. Chełmiński,et al.  NEW CONVEXITY CONDITIONS IN THE CALCULUS OF VARIATIONS AND COMPENSATED COMPACTNESS THEORY , 2006 .

[14]  I. Ghiba,et al.  On spatial evolution of the solution of a non-standard problem in the bending theory of elastic plates , 2015 .

[15]  The Hencky strain energy ‖log U‖2 measures the geodesic distance of the deformation gradient to SO(n) in the canonical left-invariant Riemannian metric on GL(n) , 2013 .

[16]  Convexity Conditions for Rotationally Invariant Functions in Two Dimensions , 2002 .

[17]  Patrizio Neff,et al.  A Riemannian approach to strain measures in nonlinear elasticity , 2014 .

[18]  David Steigmann,et al.  The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers , 2014, 1408.4430.

[19]  G. Zurlo,et al.  A Note on Strong Ellipticity in Two-Dimensional Isotropic Elasticity , 2012 .

[20]  Robert J. Martin,et al.  Geometry of Logarithmic Strain Measures in Solid Mechanics , 2015, 1505.02203.

[21]  Patrizio Neff,et al.  The Exponentiated Hencky-Logarithmic Strain Energy. Part I: Constitutive Issues and Rank-One Convexity , 2014, 1403.3843.

[22]  Jay D. Humphrey,et al.  An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity , 2000 .

[23]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[24]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[25]  A. Volberg Ahlfors-Beurling operator on radial functions , 2012, 1203.2291.

[26]  S. Müller,et al.  Rank-one convex functions on 2×2 symmetric matrices and laminates on rank-three lines , 2005 .

[27]  J. K. Knowles,et al.  On the failure of ellipticity of the equations for finite elastostatic plane strain , 1976 .

[28]  J. K. Knowles,et al.  On the ellipticity of the equations of nonlinear elastostatics for a special material , 1975 .

[29]  Alexandre Danescu,et al.  On the Strong Ellipticity of the Anisotropic Linearly Elastic Materials , 2007 .

[30]  Implications of rank one convexity , 1988 .

[31]  R. Fosdick,et al.  A note on non-uniqueness in linear elasticity theory , 1968 .

[32]  On Rank One Connectedness, for Planar Objective Functions , 2000 .

[33]  S. Chiriţă,et al.  Strong ellipticity and progressive waves in elastic materials with voids , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  J. Ball,et al.  Incompatible Sets of Gradients and Metastability , 2014, 1407.5929.

[35]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[36]  Baisheng Yan,et al.  On rank-one convex and polyconvex conformal energy functions with slow growth , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  Eero Saksman,et al.  Burkholder integrals, Morrey's problem and quasiconformal mappings , 2010, 1012.0504.

[38]  Gilles Aubert,et al.  Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2 , 1995 .

[39]  Paolo Marcellini,et al.  Quasiconvex quadratic forms in two dimensions , 1984 .

[40]  Nicolas Favrie,et al.  Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form , 2014 .

[41]  On a counterexample of a rank 1 convex function which is not polyconvex in the case N=2 , 1987 .

[42]  J. Zimmer,et al.  Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices , 2006 .

[43]  P. Pedregal,et al.  A note on quasiconvexity and rank-one convexity for matrices. , 1998 .

[44]  J. Hutchinson,et al.  Finite Strain J 2 Deformation Theory , 1981 .

[45]  Rank-one convexity implies quasi-convexity on certain hypersurfaces , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[46]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[47]  ON THE PLANAR RANK-ONE CONVEXITY CONDITION , 1995 .

[48]  Time-weighted surface power function method for the study of spatial behaviour in dynamics of continua , 1999 .

[49]  Sergio Conti,et al.  Quasiconvex functions incorporating volumetric constraints are rank-one convex , 2008 .

[50]  Quasiconvexity equals lamination convexity for isotropic sets of 2 × 2 matrices , 2013 .

[51]  H. Richter Das isotrope Elastizitätsgesetz , 1948 .

[52]  Stefan Müller,et al.  Rank-one convexity implies quasiconvexity on diagonal matrices , 1999 .

[53]  Bernard Dacorogna,et al.  An example of a quasiconvex function that is not polyconvex in two dimensions , 1992 .

[54]  Heng Xiao,et al.  Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky's logarithmic strain tensor , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[55]  A. Raoult Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material , 1986 .

[56]  A simple derivation of necessary and sufficient conditions for the strong ellipticity of isotropic hyperelastic materials in plane strain , 1991 .

[57]  On new geometric conditions for some weakly lower semicontinuous functionals with applications to the rank-one conjecture of Morrey , 2003, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[58]  Patrizio Neff,et al.  Mathematische Analyse multiplikativer Viskoplastizität , 2000 .

[59]  A. Kałamajska,et al.  On the condition of tetrahedral polyconvexity, arising from calculus of variations , 2017 .

[60]  V. Sverák,et al.  Rank-one convexity does not imply quasiconvexity , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[61]  Bernard Dacorogna Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension , 2001 .

[62]  T. Sendova,et al.  On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain , 2005 .

[63]  Carlo Sansour,et al.  On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy , 2008 .

[64]  J. Ball,et al.  W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .

[65]  Kewei Zhang,et al.  BMO and uniform estimates for multi-well problems , 2013 .

[66]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[67]  R. Rivlin,et al.  On the speed of propagation of waves in a deformed compressible elastic material , 1978 .

[68]  Emil Ernst,et al.  Ellipticity Loss in Isotropic Elasticity , 1998 .

[69]  Tadeusz Iwaniec,et al.  An Invitation to n-Harmonic Hyperelasticity , 2011 .

[70]  Tadeusz Iwaniec,et al.  Hyperelastic Deformations of Smallest Total Energy , 2009 .