Inelastic and Quasielastic Neutron Scattering in PbMg1/3Nb2/3O3 Above the Burns Temperature

We present here the results of the study of the true paraelectric phase of PMN via neutron inelastic and quasielastic scattering. Inelastic data for two different Brillouin Zones were treated simultaneously in terms of the 2-mode approach for the lowest TO mode. We have confirmed that 2-mode description allows removing the contradictions between the temperature dependences of the soft-mode frequency and the dielectric susceptibility existing in the single mode model. The diffuse scattering was mapped in three Brillouin zones and substantial anisotropy of the 2-d intensity distribution was found that was not reported before. Treatment of data in terms of Huang scattering produced satisfactory description of the experimental data. It is shown that broad satellite peaks close to the main Bragg reflections in our case can be described in terms of instrumental resolution.

[1]  P. Gehring,et al.  Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2009, 0904.4234.

[2]  T. Welberry,et al.  Different Models for the Polar Nanodomain Structure of PZN and Other Relaxor Ferroelectrics , 2008 .

[3]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[4]  Seiji Kojima,et al.  Anomalous dispersion of the elastic constants at the phase transformation of thePbMg1∕3Nb2∕3O3relaxor ferroelectric , 2008 .

[5]  T. Welberry,et al.  Chemical origin of nanoscale polar domains in PbZn 1/3 Nb 2/3 O 3 , 2006 .

[6]  K. Hirota,et al.  Neutron and X-ray Scattering Studies of Relaxors , 2006 .

[7]  P. M. G. G. Shirane,et al.  Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor , 2006, cond-mat/0605569.

[8]  R. Birgeneau,et al.  Damped soft phonons and diffuse scattering in 40%Pb(Mg1∕3Nb2∕3)O3-60%PbTiO3 , 2006, cond-mat/0603534.

[9]  U. V. Waghmare,et al.  First-principles-based simulations of relaxor ferroelectrics , 2006 .

[10]  N. Setter,et al.  Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single crystals, ceramics and thin films , 2006 .

[11]  T. Welberry Diffuse Scattering and Monte Carlo Studies of Relaxor Ferroelectrics , 2005 .

[12]  S. Vakhrushev,et al.  Diffuse neutron scattering in relaxor ferroelectric PbMg1/3Nb2/3O3. , 2004, Physical chemistry chemical physics : PCCP.

[13]  R. Birgeneau,et al.  Strong Influence of the Diffuse Component on the Lattice Dynamics in Pb(Mg1/3Nb2/3)O3 , 2004, cond-mat/0404086.

[14]  G. Shirane,et al.  Three-dimensional mapping of diffuse scattering in Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} , 2004 .

[15]  M. Glinchuk Relaxor ferroelectrics: from Cross superparaelectric model to random field theory , 2004 .

[16]  G. Shirane,et al.  Cold neutron scattering study on diffuse and phonon excitations in the relaxor PbMg(1/3)Nb(2/3)O3 , 2004, cond-mat/0403544.

[17]  S. Gvasaliya,et al.  Disorder and relaxation mode in the lattice dynamics of thePbMg1/3Nb2/3O3relaxor ferroelectric , 2003, cond-mat/0311097.

[18]  S. Gvasaliya,et al.  On the existence of the relaxation mode in relaxor ferroelectrics , 2004 .

[19]  G. Shirane,et al.  Neutron elastic diffuse scattering study of Pb „ Mg , 2004 .

[20]  G. Shirane,et al.  Evidence of decoupled lattice distortion and ferroelectric polarization in the relaxor system PMN-xPT , 2003, cond-mat/0307144.

[21]  G. Shirane,et al.  Dynamics and Structure of PMN and PZN , 2003, cond-mat/0306183.

[22]  G. Shirane,et al.  Mode coupling and polar nanoregions in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O-3 , 2002, cond-mat/0208190.

[23]  S. Vakhrushev,et al.  Evolution of Structure of PbMg1/3Nb2/3O3 in the Vicinity of the Burns Temperature , 2002 .

[24]  S. Vakhrushev,et al.  Direct evidence of soft mode behavior near the Burns temperature in thePbMg1/3Nb2/3O3relaxor ferroelectric , 2002, cond-mat/0203103.

[25]  R. Birgeneau,et al.  Ferroelectric ordering in the relaxor Pb(Mg1/3Nb2/3)O3 as evidenced by low-temperature phonon anomalies , 2001, cond-mat/0112366.

[26]  G. Shirane,et al.  Neutron diffuse scattering from polar nanoregions in the relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2001, cond-mat/0109386.

[27]  G. Shirane,et al.  Soft mode dynamics above and below the Burns temperature in the relaxor Pb(Mg1/3Nb2/3)O3. , 2001, Physical review letters.

[28]  V. Emel’yanov Screening of the deformation field in a solid by point defects , 2001 .

[29]  R. Pirc,et al.  Dynamics of relaxor ferroelectrics , 2000, cond-mat/0010022.

[30]  Park,et al.  Soft phonon anomalies in the relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))0.92Ti0.08O3 , 2000, Physical review letters.

[31]  H. You X-ray scattering study of soft-optic-mode freezing in lead magnesium niobate single crystals , 2000 .

[32]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[33]  D. Strauch,et al.  Inelastic neutron scattering study of the relaxor ferroelectric PbMg1/3Nb2/3O3 at high temperatures , 1999 .

[34]  R. Pirc,et al.  Local Polarization Distribution and Edwards-Anderson Order Parameter of Relaxor Ferroelectrics , 1999 .

[35]  Zhengkui Xu,et al.  Effects of quenched disorder on La-modified lead zirconate titanate: Long- and short-range ordered structurally incommensurate phases, and glassy polar clusters , 1998 .

[36]  H. You,et al.  Diffuse X-Ray Scattering Study of Lead Magnesium Niobate Single Crystals , 1997 .

[37]  Y. Feng,et al.  Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals , 1996 .

[38]  M. Glinchuk,et al.  A random field theory based model for ferroelectric relaxors , 1996 .

[39]  V. V. Chernyshov,et al.  The high-temperature structure of lead magnoniobate , 1994 .

[40]  Cross,et al.  Deviation from Curie-Weiss behavior in relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[41]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[42]  G. Calvarin,et al.  Structural study of a poled PbMg13Nb23O3 ceramic at low temperature , 1991 .

[43]  J. Gavarri,et al.  A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K , 1991 .

[44]  J. Gavarri,et al.  X-ray and neutron diffraction studies of the diffuse phase transition in PbMg13Nb23O3 ceramics , 1991 .

[45]  E. Husson,et al.  Structural study of PMN ceramics by X-ray diffraction between 297 and 1023 K , 1989 .

[46]  S. Vakhrushev,et al.  Glassy phenomena in disordered perovskite-like crystals , 1989 .

[47]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[48]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[49]  Yury I. Bychkov,et al.  Sov Phys Tech Phys , 1975 .

[50]  A. S. Barker,et al.  Optical studies of the vibrational properties of disordered systems , 1975 .

[51]  G. Burns,et al.  Index of refraction in ‘dirty’ displacive ferroelectrics☆ , 1973 .

[52]  H. Krause,et al.  Ordering of Mg and Nb in the octahedral positions of the “cubic” perovskite structure of Pb3MgNb2O9 , 1971 .

[53]  G. Shirane,et al.  Anomalous Acoustic Dispersion in Centrosymmetric Crystals with Soft Optic Phonons , 1970 .