Natural Evolutionary Strategies for Variational Quantum Computation

Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly-initialized parametrized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable natural evolutionary strategies, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver (VQE) and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of evolutionary strategies to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.

[1]  Patrick J. Coles,et al.  Large gradients via correlation in random parameterized quantum circuits , 2020, Quantum Science and Technology.

[2]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[3]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[4]  C. Figgatt,et al.  Demonstration of the QCCD trapped-ion quantum computer architecture , 2020, 2003.01293.

[5]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[6]  Sukin Sim,et al.  Adaptive pruning-based optimization of parameterized quantum circuits , 2020, Quantum Science and Technology.

[7]  Gian Giacomo Guerreschi,et al.  Quantum computer-aided design: digital quantum simulation of quantum processors , 2020, 2006.03070.

[8]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[9]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[10]  Akira Sone,et al.  Noise-Induced Barren Plateaus in Variational Quantum Algorithms , 2020, ArXiv.

[11]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[12]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[13]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[14]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[15]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[16]  Shun-ichi Amari,et al.  Why natural gradient? , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[17]  Matthias Degroote,et al.  Experimental demonstration of a quantum generative adversarial network for continuous distributions , 2020, ArXiv.

[18]  Geoff J Pryde,et al.  Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning. , 2018, Physical review letters.

[19]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[20]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[21]  Shravan Veerapaneni,et al.  Natural evolution strategies and quantum approximate optimization , 2020, ArXiv.

[22]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[23]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[24]  Ching-Hsing Yu,et al.  Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer , 2019, PEARC.

[25]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[26]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[27]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[28]  Mario Krenn,et al.  Quantum computer-aided design of quantum optics hardware , 2020, Quantum Science and Technology.

[29]  Alan Aspuru-Guzik,et al.  Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions , 2019, Advanced Quantum Technologies.

[30]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[31]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[32]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[33]  Alexey Uvarov,et al.  On barren plateaus and cost function locality in variational quantum algorithms , 2020, Journal of Physics A: Mathematical and Theoretical.

[34]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[35]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[36]  Jakob S. Kottmann,et al.  Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation , 2020, 2009.13545.

[37]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[38]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[39]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[40]  Juan Carrasquilla,et al.  Protocol Discovery for the Quantum Control of Majoranas by Differential Programming and Natural Evolution Strategies , 2020 .

[41]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .