Asymptotic stability and classification of multi-solitons for Klein-Gordon equations

. Focusing on multi-solitons for the Klein-Gordon equations, in first part of this paper, we establish their conditional asymptotic stability. In the second part of this paper, we classify pure multi-solitons which are solutions converging to multi-solitons in the energy space as t → ∞ . Using Strichartz estimates developed in our earlier work [11] and the modulation techniques, we show that if a solution stays close to the multi-soliton family, then it scatters to the multi-soliton family in the sense that the solution will converge in large time to a superposition of Lorentz-transformed solitons (with slightly modified velocities), and a radiation term which is at main order a free wave. Moreover, we construct a finite-codimension centre-stable manifold around the well-separated multi-soliton family. Finally, given different Lorentz parameters and arbitrary centers, we show that all the corresponding pure multi-solitons form a finite-dimension manifold.

[1]  Go-Jien Chen,et al.  Strichartz estimates for Klein-Gordon equations with moving potentials , 2022, 2210.03462.

[2]  Jacek Jendrej,et al.  Kink networks for scalar fields in dimension 1+1 , 2021, Nonlinear Analysis.

[3]  Xavier Friederich,et al.  On existence and uniqueness of asymptotic N-soliton-like solutions of the nonlinear Klein–Gordon equation , 2021, Mathematische Zeitschrift.

[4]  R. Cote,et al.  On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations , 2020, Communications in Partial Differential Equations.

[5]  Gong Chen,et al.  Strichartz Estimates for Wave Equations with Charge Transfer Hamiltonians , 2016, Memoirs of the American Mathematical Society.

[6]  Go-Jien Chen,et al.  Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein–Gordon equations , 2018, Transactions of the American Mathematical Society.

[7]  Go-Jien Chen Wave Equations with Moving Potentials , 2016, Communications in Mathematical Physics.

[8]  Go-Jien Chen Multisolitons for the Defocusing Energy Critical Wave Equation with Potentials , 2017, Communications in Mathematical Physics.

[9]  Y. Martel,et al.  Multi-travelling waves for the nonlinear Klein-Gordon equation , 2016, Transactions of the American Mathematical Society.

[10]  Dong Li,et al.  Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  J. Bellazzini,et al.  Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation , 2013, 1302.3814.

[12]  R. Cote,et al.  Multi-solitons for nonlinear Klein–Gordon equations , 2012, Forum of Mathematics, Sigma.

[13]  K. Nakanishi,et al.  Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption , 2010, 1011.0132.

[14]  Kenji Nakanishi,et al.  Invariant Manifolds and Dispersive Hamiltonian Evolution Equations , 2011 .

[15]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[16]  S. Ibrahim,et al.  Scattering threshold for the focusing nonlinear Klein–Gordon equation , 2010, 1001.1474.

[17]  K. Nakanishi,et al.  Global dynamics above the ground state energy for the cubic NLS equation in 3D , 2010, Calculus of Variations and Partial Differential Equations.

[18]  K. Nakanishi,et al.  Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation , 2010, 1005.4894.

[19]  Vianney Combet Multi-Soliton Solutions for the Supercritical gKdV Equations , 2010, 1002.2354.

[20]  Wilhelm Schlag,et al.  Stable manifolds for an orbitally unstable nonlinear Schrödinger equation , 2009 .

[21]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[22]  Terence Tao,et al.  Why are solitons stable , 2008, 0802.2408.

[23]  L. Fanelli,et al.  Strichartz and Smoothing Estimates for Dispersive Equations with Magnetic Potentials , 2007, math/0702362.

[24]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[25]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[26]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[27]  W. Schlag,et al.  On the focusing critical semi-linear wave equation , 2005, math/0508574.

[28]  Frank Merle,et al.  Asymptotic stability of solitons of the subcritical gKdV equations revisited , 2005 .

[29]  G. Perelman Asymptotic Stability of Multi-soliton Solutions for Nonlinear Schrödinger Equations , 2003 .

[30]  I. Rodnianski,et al.  The nonlinear Schrödinger equation , 2008 .

[31]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[32]  F. Merle,et al.  Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gKdV Equations , 2001, math/0112071.

[33]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[34]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[35]  R. Pego,et al.  On asymptotic stability of solitary waves , 1992 .

[36]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[37]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[38]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[39]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .